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Exercise help set 2 Topological Vector Spaces

1.1. Is the image f(A) of a balanced set A in a continuous linear mapping f
always balanced? How about the image of absorbing, convex, closed or compact sets?

Easy. The image f(A) of a balanced set A in any linear mapping f is always
balanced. The image of an absorbing set is not absorbing, unless f is surjective!.
Convex goes to convex by linearity, and compact to compact by continuity of f .
Closed sets need not go to closed – think of the identical mapping between the same
space with 2 norms giving different topologies.

1.2. In a continuous linear mapping between topological vector spaces, is the pre-
image f−1A of a balanced set A always balanced? How about the pre-image of absor-
bing, convex, closed or compact sets?

Bal yes, absorbing yes, convex yes, closed yes, compact no. All easy.

1.3. a) Constract an example of a convex set whose balanced hull is not convex.
b) Prove that a convex set A ⊂ E on is balanced, if λA ⊂ A for all λ ∈ K, with

|λ| = 1.
a) An interval in R2 not containing the origin.
b) Yes. Let |µ| ≤ 1 andx ∈ A. We prove that µx ∈ A. By assumption −x ∈ A,

so by convexity 0 = 1
2
x + 1

2
(−x) ∈ A. So the claim is true for µ = 0. By convexity

µx = (1− |µ|) · 0 + |µ|x ∈ A. By assumption µx = µ
‖µ| |µ|x ∈ A, kun µ 6= 0.

1.4. Prove that the balanced hull of a compact set is compact.
balA =

⋃
λ≤1 λA = f({λ ∈ K

∣∣ |λ| ≤ 1} × A), in the continuuous image of th
eproduct of 2 compact sets, hence compact.

1.5. Construct an example of a closed A ⊂ R2, whose convex hull is not closed.
The graph of 1

1+x2 in R2.

1.6. Prove that the supremum p(x) = supi∈I pi(x) of a family seminorms (pi)i∈I
on a vector space E is a seminorm, if p(x) <∞ for all x ∈ E.

p(x+ y) = sup
i∈I

pi(x+ y) ≤ sup
i∈I

(pi(x) + pi(y)) ≤ sup
i∈I

pi(x) + sup
i∈I

pi(y) = p(x) + p(y)

p(λx) = sup
i∈I

pi(λx) = sup
i∈I
|λ|(pi(x) = |λ| sup

i∈I
(pi(x) = |λ|p(x)

1.7. A basis of continuous seminorms N in a locally convex space E is a set of
continuous seminorms N such that for every continuous seminorm p there exists a
basis seminorm q ∈ N and a number λ > 0 such that p ≤ λq.

Prove that in a locally convex space (E, T ) every basis of continuous seminorms
N defines the same locally convex topology as T .

Let J be a basis of continuous seminorms in (E,N ). Denote the resp nbhd filters
of the origin by J and N . We will prove J = N .
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Assume first that i U ∈ UJ . Without loss of generality U is a J− basis set, so
there exists a number ε > 0 and continuous seminormst p1, . . . , pn ∈ J s.th.

U = ε
n⋂
i=1

Bpi

Because the seminorms pi are continuous in (E,N ) by assumption there are for each
i seminorms qi,j ∈ N and numbers λi > 0 (j = 1, . . . , ni) s.th.

pi ≤ λi(qi,1 + · · ·+ qi,ni
),

so for suitable ε′ > 0 we have

U ⊃ ε′
n⋂
i=1

nj⋂
j=1

Bqi,j ,

which is a N -basis set. Therefore U ∈ UN , so we have proved UJ ⊂ UN .
Assume next that U is a neighbourhood of the origin in the topology of N , so

U ∈ UN . Without loss of generality U on kantajoukko so there exists a number ε > 0
and seminorms q1, . . . , qn ∈ J s.th.

U = ε
n⋂
i=1

Bqi

Since, by assumption the seminorms pi form a basis of cont seminorms in (E,N )
there exist for each i a seminorm pi ∈ J and la number λi > 0 s.th qi ≤ λipi so
Bqi ⊃ Bλipi

= 1
λi
Bpi

and therefore for a suitable ε′ > 0 we have

U ⊃ ε′
n⋂
i=1

Bpi
,

which is a J -basis set. So U ∈ UJ , and we have proven UN ⊂ UJ .

REMARK. By similar arguments: The following are equivalent:

(1) J is a basis of continuous seminorms
(2) {εUp

∣∣ p ∈ J , ε > 0} is a neighbourhood basis of the origin.

1.8. Prove that if there exists a continuous norm in a locally convex space, then
there exists a basis of continuous seminorms consisting of norms. Is E a normed
space?

1. method: Let n be a continuous norm. in lc space (E,P). its closed 1-pallo
B = Bn is the preimage of a closed interval, hence closed. It also is a neighbourhood
of the origin. In fact, by exercise 2.1. it is a barrel (closed, absorbing, convex, balanced)
Itse asiassa se on tehtävän 1 nojalla tynnyri. There is a neighbourhood basis U of the
origin consisiting of barrels in E. Intersect all members of U with the ball B and you
get a new neighbourhood basis the origin consisiting of smaller barrels. Their gauges
are seminorms, but larger than the given norm — therefore they are norms. They
obviously form a basis of cont seminorms.

2. method: take abasis of cont seminorms J . and define {max{n, p}
∣∣ p ∈ J }.

This works (much like in method 1)
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1.9. Let E be a vector space and M ⊂ E a subspace, p a seminorm in M and q
a seminorm in the whole space a E such that p ≤ q

∣∣
M

meaning p(x) ≤ q(x)∀x ∈ M .

Prove that there exists a seminorm p̄, defined in the whole space E, such that p = p̄
∣∣
M

and p ≤ q. (Don’t try to use the axiom of choice (yet)!)
Let U = co(Up ∪ Uq). DRAW A PICTURE! Easily, U is abs, bal, convex, so its

gauge p̄ is a seminorm. Obviously U ⊃ Uq =⇒ p̄ ≤ q and finally p̄(x) = p(x) for all
x ∈M , since in the subspace M we have x ∈ U ⇐⇒ x ∈ Up.

1.10. Let (E,P) and (F,Q) be locally convex spaces with bases of continuous
seminorms P and Q. Prove that a linear mapping T : E → F is continuous if and
only if for every q ∈ Q there exist p ∈ P and λ > 0 such that q(Tx) ≤ λp(x) for all
x ∈ E.

Let the condition hold. To prove that T is continuous it is sufficient to prove that
every q ◦ T on is continuous, where q ∈ Q on kantaseminormi. This means that for
all q ∈ Q, ε > 0 there exists U ∈ UE such that |q ◦ T | ≤ ε in U .

Consider a seminorm p like in the assumption, satisfying q(Tx) ≤ λp(x) for all
x ∈ E. Now a suitable µUp can be chosen for U i. To verify this, you must calculate a
little.

The inverse implication is similar.


