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Exercise help set 2 Topological Vector Spaces

1.1. Is the image f(A) of a balanced set A in a continuous linear mapping f
always balanced? How about the image of absorbing, convex, closed or compact sets?

Easy. The image f(A) of a balanced set A in any linear mapping [ is always
balanced. The image of an absorbing set is not absorbing, unless f is surjective!.
Convex goes to convex by linearity, and compact to compact by continuity of f.
Closed sets need not go to closed — think of the identical mapping between the same
space with 2 norms giving different topologies.

1.2. In a continuous linear mapping between topological vector spaces, is the pre-
image f~YA of a balanced set A always balanced? How about the pre-image of absor-
bing, convex, closed or compact sets?

Bal yes, absorbing yes, convex yes, closed yes, compact no. All easy.

1.3. a) Constract an example of a convex set whose balanced hull is not convex.

b) Prove that a convex set A C E on is balanced, if N\A C A for all A € K, with
Al = 1.

a) An interval in R? not containing the origin.

b) Yes. Let |u| < 1 andx € A. We prove that ux € A. By assumption —z € A,
so by convexity 0 = %.I + %(—x) € A. So the claim is true for p = 0. By convexity
p = (L—|p]) - 0+ |plz € A. By assumption pz = {f|ule € A, kun p # 0.

1.4. Prove that the balanced hull of a compact set is compact.
bal A = |J,.; M = f({A € K | |A| < 1} x A), in the continuuous image of th
eproduct of 2 compact sets, hence compact.

1.5. Construct an example of a closed A C R?, whose convex hull is not closed.

The graph of Hlmg in R2.

1.6. Prove that the supremum p(x) = sup;c; pi(x) of a family seminorms (p;)ier
on a vector space E is a seminorm, if p(x) < oo for all x € E.

plz+y) = suypi(x +y) < su}o(pi(w) +pi(y)) < sup pi(z) + sup pi(y) = p(x) + p(y)
i€ 1€ e e

p(Az) = sup pi(Az) = sup |A|(pi(x) = [A]sup(pi(x) = [Alp(x)
iel iel iel

1.7. A basis of continuous seminorms N in a locally convex space E is a set of
continuous seminorms N such that for every continuous seminorm p there exists a
basis seminorm q¢ € N and a number X\ > 0 such that p < \q.

Prove that in a locally convex space (E,T) every basis of continuous seminorms
N defines the same locally convex topology as T .

Let J be a basis of continuous seminorms in (F, A'). Denote the resp nbhd filters
of the origin by J and N. We will prove J = N.
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Assume first that i U € U;. Without loss of generality U is a J— basis set, so
there exists a number € > 0 and continuous seminormst py,...,p, € J s.th.

U=¢
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Because the seminorms p; are continuous in
i seminorms ¢; ; € N and numbers \; > 0 (j

pi < Nil@ia+ -+ @imy),

so for suitable €' > 0 we have

E,N') by assumption there are for each
=1,...,n;) s.th.

n nj

U>D e’ﬂ ﬂqu’j,

i=1j=1

which is a N-basis set. Therefore U € Uy, so we have proved U; C Uy
Assume next that U is a neighbourhood of the origin in the topology of N, so

U € Uy. Without loss of generality U on kantajoukko so there exists a number € > 0
and seminorms qi,...,q, € J s.th.

n

U=¢ ﬂ By,

i=1
Since, by assumption the seminorms p; form a basis of cont seminorms in (F, N)
there exist for each ¢ a seminorm p; € J and la number \; > 0 s.th ¢; < \;p; so
B, D By,p, = /\%_Bpl. and therefore for a suitable ¢’ > 0 we have

UD¢ ﬂ By,
i=1
which is a J-basis set. So U € Uy, and we have proven Uy C U;.

REMARK. By similar arguments: The following are equivalent:

(1) J is a basis of continuous seminorms
(2) {eU, ‘ p € J, e >0} is a neighbourhood basis of the origin.

1.8. Prove that if there exists a continuous norm in a locally convex space, then
there exists a basis of continuous seminorms consisting of norms. Is E a normed
space?

1. method: Let n be a continuous norm. in lc space (E,P). its closed 1-pallo
B = B, is the preimage of a closed interval, hence closed. It also is a neighbourhood
of the origin. In fact, by exercise 2.1. it is a barrel (closed, absorbing, convex, balanced)
Itse asiassa se on tehtdvan 1 nojalla tynnyri. There is a neighbourhood basis U of the
origin consisiting of barrels in F. Intersect all members of ¢ with the ball B and you
get a new neighbourhood basis the origin consisiting of smaller barrels. Their gauges
are seminorms, but larger than the given norm — therefore they are norms. They
obviously form a basis of cont seminorms.

2. method: take abasis of cont seminorms J. and define {max{n,p} | p € J}.
This works (much like in method 1)
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1.9. Let E be a vector space and M C E a subspace, p a seminorm in M and q
a seminorm in the whole space a E such that p < q|M meaning p(z) < q(z)Vx € M.
Prove that there exists a seminorm p, defined in the whole space E, such that p = ]3|M
and p < q. (Don’t try to use the axiom of choice (yet)!)

Let U = co(U, U U,). DRAW A PICTURE! Easily, U is abs, bal, convex, so its
gauge p is a seminorm. Obviously U D U, = p < ¢ and finally p(x) = p(x) for all
x € M, since in the subspace M we have v € U <= z € U,.

1.10. Let (E,P) and (F,Q) be locally conver spaces with bases of continuous
seminorms P and Q. Prove that a linear mapping T : E — F is continuous if and
only if for every q € Q there exist p € P and A\ > 0 such that q(Tx) < Ap(zx) for all
re L.

Let the condition hold. To prove that 7" is continuous it is sufficient to prove that
every g o T on is continuous, where ¢ € Q on kantaseminormi. This means that for
all ¢ € Q, ¢ > 0 there exists U € Ug such that |goT| < ein U.

Consider a seminorm p like in the assumption, satisfying ¢(T'z) < Ap(x) for all
x € E. Now a suitable pU, can be chosen for Ui. To verify this, you must calculate a
little.

The inverse implication is similar.



