JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Exercise help set 1

Topological Vector Spaces

1.1. Let \mathcal{A} and \mathcal{B} be filter bases in a set E. a) Is $\{A \cup B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ a filter basis in the set E? No. It can contain \emptyset as an element. The filter basis axioms are ovat

(1)
$$\emptyset \notin \mathcal{A} \quad \text{ja } \mathcal{A} \neq \emptyset$$

the first is easy, the second is not difficult:

$$(A \cup B) \cap (A' \cup B') \supset (A \cap A') \cup (B \cap B') \supset A'' \cup B''.$$

b) Is $\{A \cap B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ a filter basis in the set E? No. It can contain \emptyset as an element.

Notation. .

Unless otherwise stated, E is a tvs, $\mathcal{F}(0)$ the neighbourhood filter of its origin. $\mathbf{N} = \{0, 1, 2, ...\}$. $\mathbf{N}^* = \{1, 2, ...\}$

1.2. Prove: E is connected. (PS: How about general topological groups?)

Even pathwise connected!. Let $x, y \in E$. The mapping $\gamma : [0.1] \to E : t \mapsto ty + (1-t)x$ is a continuous path from $\gamma(0) = x$ to $\gamma(1) = y$. (Added question : Is a topological group always connected. No, Counterexample: Discrete finite groups.

1.3. Prove that a) $\bigcap \mathcal{F}(0) = \overline{\{0\}}$ and b) that this is a vector subspace. $x \in \overline{\{0\}} \iff 0 \in U \quad \forall U \in U_x$ $\iff 0 \in x + V \quad \forall V \in U_o$ $\iff x \in -V \quad \forall V \in U_o$ $\iff x \in V \quad \forall V \in U_o \text{ (homotetiainvarianssi)}$ $\iff x \in \bigcap \mathcal{F}(0)$

b) follows drom the next exercise. there is also a direct proof:

$$1^{\circ}) \quad 0 \in \{0\}.$$

$$2^{\circ}) \quad x \in \overline{\{0\}} = \bigcap \mathcal{F}(0) \iff x \in V \quad \forall V \in U_o$$

$$\iff \lambda x \in \lambda V \quad \forall V \in U_o, \lambda \neq 0$$

$$\iff \lambda x \in U \quad \forall U \in U_o, \lambda \neq 0 \text{ (homotety invariance)}$$

$$\iff \lambda x \in \overline{\{0\}}.$$

3°) Let $x, y \in \overline{\{0\}}$, t.s. $x, y \in V \quad \forall V \in U_o$. We will prove that $x, y \in \overline{\{0\}}$. Take $U \in U_o$. Choose $V \in U_o$ s.th. $V + V \subset U$. Now $x + y \in V + V \subset U$.

1.4. Prove that the closure \overline{F} of a vector subspace $F \subset E$ is a vector subspace.

At least $0 \subset \overline{F} \subset \overline{F}$. Remeber from topology that a mapping f is continuous iff $f(\overline{A}) \subset \overline{f(A)}$ fo all A, and that in the product topology: $\overline{A \times B} = \overline{A} \times \overline{B}$. By continuity of multiplication, every $\lambda \cdot : E \to E : x \mapsto \lambda x$ is continuous, and — because $\lambda \cdot F \subset F$, — also $\lambda \cdot \overline{F} \subset \overline{\lambda \cdot F} \subset \overline{F}$. because addition $+ : E \times E \to E$ is continuous, we have $\overline{F} + \overline{F} = +(\overline{F} \times \overline{F}) = +(\overline{F} \times \overline{F}) \subset \overline{+(F \times F)} \subset \overline{F}$. \Box

1.5. Is the balanced hull $\operatorname{bal} A = \{\lambda x \mid \lambda \in \mathbf{K}\}$ of any open set $A \subset E$ open? (*Hint. no, but if ...*)

No. Counterexample . In the normaed space \mathbb{R}^2 the bal hull of $]0, 1[\times]0, 1[$ contains 0.

But if 0 already is contained in the open set A, then $\operatorname{bal} A = \{\lambda x \mid \lambda \in \mathbf{K}\}\$ is open, since in that case $\operatorname{bal} A = \bigcup_{|\lambda| \leq 1} \lambda A = \bigcup_{0 \neq |\lambda| \leq 1} \lambda A$ and for $\lambda \neq 0$ every λA is open.

1.6. Consider $E = C(\mathbf{R}, \mathbf{R}) = \{f : \mathbf{R} \to \mathbf{R} \mid f \text{ is continuous}\}$. Denote

 $V_m = \{f \in E \mid f(t) \mid \le m(t) \; \forall t \in \mathbf{R}\}, \text{ where } m \in E \text{ and } m(t) > 0 \; \forall t \in \mathbf{R}.$

Prove the existence of a topology \mathcal{T} in E such that addition is continuous (so E is a topological abelian group) and $\mathcal{F} = \{V_m \mid m \in E \text{ and } m(t) > 0 \forall t \in \mathbf{R}\}$ is a neighbourhood basis of the origin. Is (E, \mathcal{T}) a tvs? Is the subspace

 $D = \{ f \in E \mid \text{supp } f \text{ is compact } \} \subset E$

a tvs? (Does it have a countable neighbourhood basis of the origin? Why do I ask?)

There is only one choice for topology — the one given by neighbouhood fileters $U_f = \{f + \mathcal{V}_m \mid m(t) > 0 \,\forall t \in \mathbf{R}\}.$

At least \mathcal{F} satisfies the filter basis axioms. (For the intersection, property, choose $m'' = \min(m, m')$.) and every V_m contains the origin. so a translation invariant topology eists.

Cont of sum:

$$(x + \frac{1}{2}V_m) + (y + \frac{1}{2}V_m) \subset (x + y) + V_m.$$

Counterexample proving discontinuity of product: $f(t) = e^t$. At $f \in E$ the partial mapping $\lambda \mapsto \lambda f$ is not continuous $\mathbf{R} \to E$, sillä, since for $m(t) = 1 \forall t$ we have $|\lambda f(t) - f(t) = (|\lambda - 1|)e^t$ which is outside V_m unless λ ole 1. so neighbourhoods are not absorbing.

b) $D = \{f \in E \mid \text{supp } f \text{ is } c\} \subset E \text{ with the subspace topology is a tvs, since } f + V_m \in \mathcal{F}_f, g \in D \cap (f + V_n) \text{ for some } n(t) \ge 0 \forall t \in \mathbf{R} \text{ ja } |\lambda - 1| \le \epsilon \text{ and } t \in \mathbf{R}.$

 $\begin{array}{ll} 1) & t \notin \mathrm{supp}\, f \implies |\lambda g(t) - f(t)| = |\lambda g(t) - 0| = |\lambda| |g(t)| \leq |1 + \epsilon |n(t) < m(t), \\ \text{for the choice } n(t) = \frac{1}{1 + \epsilon} m(t) \end{array}$

2)
$$t \in \operatorname{supp} f \implies |\lambda g(t) - f(t)| = |\lambda g(t) - \lambda f(t) + \lambda f(t) - f(t)| \le$$

 $\le |\lambda|g(t) - f(t)| + (\lambda - 1)|f(t)|$
 $\le (1 + \epsilon)m(t) + \epsilon ||f||_{\infty} < m(t),$

for the choice $n(t) = \frac{1}{3}m(t)$ and $\epsilon = \min\{1, \frac{1}{3\|f\|_{\infty}} \inf_{t \in \text{supp } f} n(t)\}.$

The space is not metrizable — in fact nbot even = has a denumerable neighbourhood basis: If it would have a neighbourhood basis like $\{V_{m_k} \mid k \in \mathbf{N}\}$, then we would choose $m \in \mathcal{C}(\mathbf{R}, \mathbf{R})$ s.th.

$$m(t) > 0 \forall t$$

and

$$m(k) < m_k(k) \forall k \in \mathbf{N}$$

Now there would not exist any V_{m_k} , s. that $V_{m_k} \subset V_m$.

1.7. Let $U \subset E$ be convex, balanced and absorbing. Prove that $\{\frac{1}{n}U \mid n \in \mathbb{N}^*\}$ is a neighbourhood basis of the origin in some tvs-topology. (Do we need all 3 assumptions?)

Jus to solution sketch:

 $\mathcal{K} = \{\frac{1}{n}U \mid n \in \mathbb{N}*\}$ is a nbhd basis in some tr inv topology, since it satisfies the properties in theorem....... (Check this)

 $\begin{array}{l} a) \ V \in \mathcal{K}\&\lambda \neq 0 \implies \exists U \in \mathcal{K} : \lambda U \subset V \ (?) \\ b) \ V \in \mathcal{K} \implies V \ absorb. \\ (Really: U \ abs \implies \frac{1}{n}U \ abs \implies V \ abs, \ for \ \frac{1}{n}U \subset V.) \\ c) \ U' \in \mathcal{K} \implies \exists n, U : \frac{1}{n}U \subset U' \implies \frac{1}{2n}U + \frac{1}{2n}U \subset \operatorname{co}(\frac{1}{n}U) = \frac{1}{n} \operatorname{co} U = \frac{1}{n}U \subset U'. \\ d) \ U \in \mathcal{K} \implies \exists \ bal \ V \in \mathcal{K} \ s. \ th. \ V \subset U. \ OK. \end{array}$

1.8. A linear mapping $L : E \to F$ between 2 topological vector spaces (E, \mathcal{T}_E) ja (F, \mathcal{T}_F) is continuous at any point $a \in E$ iff it is continuous at the origin. Prove that in this case L is uniformly continuous in the following sense

 $\forall A \in \mathcal{U}_{0,F} \quad \exists B \in \mathcal{U}_{0,E} : \quad (x-y) \in B \implies (Tx - Ty) \in A.$

TODISTUS. : easy!