MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Exercise set7

Topological vector spaces

 $\uparrow f(n)$

Tue Nov 9.2010 14.30-16.00 MaD-355

7.1. Let E locally convex Hausdorff-space and $A \subset E$. Find a necessary and sufficient condition for that the polar of A:n in E^* (or E') is $\{0\}$. (Some help:: bipolaari?)

7.2. Let *E* be a locally convex Hausdorff-space and $B \subset E$ balansoitu, konveksi and bounded – and complete. Define Therefore is a seminormi, since *B* is balansoitu, konveksi and in E_B s absorboiva. In fact the gauge *p* is a norm, since *B* is bounded in tehe original Hausdorff-topology τ of *E*, so we write $p = \|\cdot\|$. Is the unit ball of E_B same as the closure \overline{B} ?

7.3. Let E be a locally convex Hausdorff-space. Then (E, E^*) is separoiva. Therefore the completion of $E_{\sigma(E,E^*)}$: is the algebrallinen duali $(E^*)'$. Can E_{σ} be complete?

7.4. Let (E, F) separoituva dualiteetti and $M \subset E$ vector subpace. Prove that $M^{\perp \perp} = M$ if and only if M is closed in some compatible topology wrt duality (E, F).

7.5. Prove that

a) \mathfrak{S} -topology is locally convex and is given by the gauges of the polars of the $A \in \mathfrak{S}, p_A(y) = \sup_{x \in A} |\langle x, y \rangle|.$

b) if \mathfrak{S} satisfies the conditions

(1) $A, B \in \mathfrak{S} \implies \exists C \in \mathfrak{S} \text{ such that } A \cup B \subset C \text{ and}$

(2) $A \in \mathfrak{S}, \lambda \in \mathbb{K} \implies \exists B \in \mathfrak{S} \text{ such that } \lambda A \subset B$,

then $\{A^{\circ} \mid A \in \mathfrak{S}\}$ is a basis of neighbourhoods of the origin in the \mathfrak{S} -topologiy.

c) If \mathfrak{S} satisfies $\bigcup_{\mathfrak{S}} A = E$, then \mathfrak{S} -topologia is finer than weak topology $\sigma(F, E)$.

7.6. Prove directly (No Alaoglun and Bourbakin), that an equicontinuous set $A \subset E^*$ is weakly bounded.

7.7. Let E non-complete locally convex Hausdorff-space and \hat{E} its completion. Prove that the topology $\sigma(E', \hat{E})$ is strictly finer than $\sigma(E', E)$ and similarly for E^* .

Solution: The weak topologia is compatible, so the dual of E': is E in one topology and \hat{E} in the other. The topologies must be different!

7.8. Let E be a Banach space. Prove that $b(E, E') = \tau(E, E')$.

7.9. *Is Schwartzin testifunktiospace $D(\mathbb{R})$ normable? How about the spaces D(K)?