JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Exercise set 3 **Topological Vector Spaces** Tuesday Oct.12.2010 2.30-4.00 PM MaD-355

Unless otherwise stated, E is a tvs.

3.1. Every compact set $K \subset \mathbf{R}^n$ defines a seminorm $p_K(f) = \sup f(K) (= \max f(K))$ in the space $E = \mathcal{C}(\mathbf{R}^n) = \{f : \mathbf{R}^n \to \mathbf{R} \mid f \text{ is continuous}\}$. These seminorms give rise to a locally convex topology \mathcal{T} .

a) Is \mathcal{T} a Hausdorff-topology?

b) Is the sequence $f_n(x) = \frac{1}{n}e^x$ convergent in the topology \mathcal{T} ? c) Does there exist in E a normi, giving the topology \mathcal{T} , eli onko E normeerautuva? (Is \mathcal{T} normable?) (answer : no. Why?)

3.2. The seminorms $p_n(f) = \sup_{0 \le t \le 1} |f^{(n)}(t)|$ (n = 0, 1, 2, ...) define a cocally convex topology \mathcal{T} in the space $E = \mathcal{C}^{\infty}([0,1]) = \{f : [0,1] \to \mathbb{R} \mid f \text{ is infinitely many}\}$ times derivable}. For $f \in E$, denote

$$Tf(x) = \int_0^x f(t) \, dt.$$

T so is a linear mapping (also called an operaator or eli transformation) $E \to E$.

a) Is T continuous?

b) Is the topology \mathcal{T} normable?

3.3. Let E be a real locally convex space and $A \subset E$ concex. Prove that A is closed if and only if A is the intersection of some closed half spaces in E.

3.4. Let E be a normed space. Prove that the norm $x \mapsto ||x||$ is discontinuous E in the weak topology of E (weakly continuous). (The weak topology is defined by the seminorms $x \mapsto |\langle x, x* \rangle|$, where $x* \in E^* = \{\text{continuous lin forms}\}$.)

Is it lower semicontinuous? For this it is sufficient that it is the pointwise supremum of a family of continuopuis mappings.

3.5. Let (E, P) be a locally convex space. Prove that teh sequence $(x_n)_{\mathbf{N}}$ in E is a Cauchy-sequence if and only if

 $\forall p \in P \text{ and } \forall \epsilon > 0 \exists n_0 \in \mathbf{N} \text{ s.e. } q, r \geq n_0 \implies p(x_q - x_r) \leq \epsilon.$

3.6. Let $E = \prod_{i \in I} E_i$ be the product of topological vector spaces (product topology!) and $\pi_i : E \to E_i$ a standard projection $(i \in I)$. Prove that \mathcal{F} is a Cauchy filter in E if and only if every $\pi(\mathcal{F}) \subset E_i$ is a Cauchy filter in E_i . (Take $I = \{1, 2\}$ if you want an easy case)

3.7. (continue) Prove that $E = \prod_{i \in I} E_i$ is complete if and only if each E_i is complete.

3.8. Let

 $E = \{ f \in \mathcal{C}[0,1] \mid \exists \epsilon_f > 0 \text{ such that } f(t) = 0 \forall 0 \le t \le \epsilon(f) \}$

with the norm $||f|| = \sup |f|$. Is

$$T = f \in E \mid |f(\frac{1}{n}) \leq \frac{1}{n} \,\forall \, n \in \mathbf{N}^* \}$$

a barrel? Is it a neighbourhood of the origin? (Why do I ask?)

3.9. An example of a subset of a locally convex space which is sequentially complete but not complete: $E = \mathcal{F}([0, 1], \mathbf{R}) = \mathbf{R}^{[0,1]} = \{\text{allo functions } [0, 1] \to \mathbf{R}\}$. Topology of pointwise convergence is seminorms $p_x = |f(x)|$. $M = \{f \in E \mid f(x) \neq 0 \text{ for at most countably many } x \in [0, 1]\}.$

3.10. If You like to do more. Let $K \subset \mathbb{R}^n$ be compact. In the space

$$E = \mathcal{C}^{\infty}_{c}(K) = \{ f : \mathbf{R}^{n} \to \mathbf{R} \mid f \in \mathcal{C}^{\infty}, \text{ supp } f \subset K \}$$

use the semonorms

$$q_{\alpha}(f) = \sup_{x \in K} \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} f(x) \right|,$$

where $\left(\frac{\partial}{\partial x}\right)^{\alpha} f(x)$ is the (higher) partial derivative corresponding to the multi-index $\alpha \in \mathbf{N}^n$ (You can take \mathbf{R}^1 and usual lhigher derivatives - it makes no difference). Write $\mathcal{Q} = \{q_\alpha \mid \alpha \in \mathbf{N}^n\}$. Prove that a (E, \mathcal{Q}) is Fréchet space. (loc-con, metr, compl)