JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Exercise set 2 Topological Vector Spaces tuesday 10.5.2010 probably alraedy 14-16 MaD-355 or somewhere else ??

Unless otherwise stated, E is a tvs.

2.1. A. nswer some of the following questions:

Is the image f(A) of a balanced set A in a continuous linear mapping f always balanced? How about the image of absorbing, convex, closed or compact sets?

2.2. Answer some of the following questions:

In a continuous linear mapping between topological vector spaces, is the pre-image $f^{-1}A$ of a balanced set A always balanced? How about the pre-image of absorbing, convex, closed or compact sets?

2.3. a) Constract an example of a convex set whose balanced hull is not convex. b) Prove that a convex set $A \subset E$ on is balanced, if $\lambda A \subset A$ for all $\lambda \in \mathbf{K}$, with $|\lambda| = 1$.

2.4. Prove that the balanced hull of a compact set is compact.

2.5. Construct an example of a closed $A \subset \mathbf{R}^2$, whose convex hull is not closed.

2.6. Prove that the supremum $p(x) = \sup_{i \in I} p_i(x)$ of a family seminorms $(p_i)_{i \in I}$ on a vector space E is a seminorm, if $p(x) < \infty$ for all $x \in E$.

2.7. A basis of continuous seminorms \mathcal{N} in a locally convex space E is a set of continuous seminorms \mathcal{N} such that for every continuous seminorm p there exists a basis seminorm $q \in \mathcal{N}$ and a number $\lambda > 0$ such that $p \leq \lambda q$.

Prove that in a locally convex space (E, \mathcal{T}) every basis of continuous seminorms \mathcal{N} defines the same locally convex topology as \mathcal{T} .

2.8. Prove that if there exists a continuous norm in a locally convex space, then there exists a basis of continuous seminorms consisting of norms. Is E a normed space?

2.9. Let *E* be a vector space and $M \subset E$ a subspace, *p* a seminorm in *M* and *q* a seminorm in the whole space a *E* such that $p \leq q|_M$ meaning $p(x) \leq q(x) \forall x \in M$. Prove that there exists a seminorm \bar{p} , defined in the whole space *E*, such that $p = \bar{p}|_M$ and $p \leq q$. (Don't try to use the axiom of choice (yet)!)

2.10. Let (E, \mathcal{P}) and (F, \mathcal{Q}) be locally convex spaces with bases of continuous seminorms \mathcal{P} and \mathcal{Q} . Prove that a linear mapping $T : E \to F$ is continuous if and only if for every $q \in \mathcal{Q}$ there exist $p \in \mathcal{P}$ and $\lambda > 0$ such that $q(Tx) \leq \lambda p(x)$ for all $x \in E$.