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4.1. Baire’s category theorem 19
4.2. Complete topological vector spaces 21
4.3. Metrizable locally convex spaces 22
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Part I: Topological vector spaces

1. General topological vector spaces

1.1. Vector space topologies.

Definition 1.1. K is R or C with its standard topology. Vector spaces have coef-
ficdients in K.

A topological vector space is a vector space E with a topology T , such that

+ : E × E → E and(1.1)

· : K× E → E(1.2)

are continuous. This kind of topology is E is called a vector space topology.

Example 1.2. Examples:
- normed spaces,
- Lebesgue spaces (0<p<1 included!) 1

- weak topology

Remark 1.3. In a topological vector space every translation map E → E : x 7→
x+ a is a homeomorphism, so T is translation invariant for a ∈ E, we have

A ∈ T if and only if A+ a ∈ T .

Similarly, T is also homothety invariant : for λ ∈ K \ {0}, we have

A ∈ T if and only if λA ∈ T .

Corollary of transla tion invariance:

Corollary 1.4. Between topological vector spaces (E, TE) and (F, TF ) a linear map
L : E → F is continuous at any a ∈ E if and only if it is continuous at the origin.
Furthermore L i such that en uniformly continuous in the following sense: For each
open neighbourhood A of the origin of F there exists an open neighbourhood B of
the origin of E such that

(x− y) ∈ B =⇒ (Lx− Ly) ∈ A.

Proof. If L is continuous at 0, then

x 7→ x− a 7→ L(x− a) 7→ L(x− a) + La = Lx

— same as L itself — is continuous at a. Similarly prove the converse; if L is
continuous at a then it is also continuous at 0. ”Uniformly continuous”is exercise. �

1.2. Neighbourhoods and filters.

Definition 1.5. Let (X, T ) be a topological space and x ∈ X.

(1) The set U ⊂ X is a neighbourhood of the point x if x is an interior point of
U which means, there exists an open set A ∈ T , such, that x ∈ A ⊂ U . In
particular every open set containing x is a neighbourhood of x.

1Draw unit ball in 2-dimensional `
1
2
2 !
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(2) The set of all neighbourhoods of a point x is the neighbourhood filter of x:

Ux := {U ⊂ E
∣∣ U is a neighbourhood of x}.

In particular, in a topological vector space the neighbourhood filter of the
origin is called U0.2

(3) A basis K of a topology T is a subset K ⊂ T such that every open set A ∈ T
is a unuion of some basis sets: A =

⋃
A for some A ⊂ K.

Remark 1.6. The classical example of a basis for a topology are the open balls in
a metric space. Another example is the product of two topological spaces, where the
basic open sets are the finite intersections of Cartesian products of open sets.

A ⊂ X is a neighbourhood of x if and only if there exists a basis open set K ⊂ X,
such that x ∈ K ⊂ A.

A ⊂ X is open if and only if it is a neighbourhood of each of its points.

In a topological vector space, by translation invariance: ∀x ∈ E:

Ux = x+ U0 = {x+ A
∣∣ A ∈ U0}.

Definition 1.7. A neighbourhood basis of a point x ∈ E is a set Kx ⊂ Ux of
neighbourhoods such that . every neighbourhood contains one of the basic ones:

∀A ∈ Ux ∃K ∈ Kx : K ⊂ A,

in other words: The neighbourhood filter consists of all basis neighbourhoods and
their supsets.

Example 1.8. In a normed spaxe (E, ‖ · ‖) a neighbourhood basis of x is given by
all x-centered balls. The same holds in any metric space.

Definition 1.9. A ⊂ E is balanced , if and only if

αA ⊂ A ∀|α| ≤ 1.

The balanced hull of A ⊂ E is the smallest balanced set containing A. It exists, since
the intersection of arbitrarily (even ∞) many balanced sets is balanced.

bal(A) =
⋂
{B
∣∣ B is balanced and B ⊃ A}.

Homework problem: Is bal(A) =
⋃
|α|≤1 αA ?

Definition 1.10. A ⊂ E is absorbing if for all x ∈ E there exists a number λ > 0,
such that

λ < |α| =⇒ x ∈ αA.
This is equivalent to the claim that every line through the origin {λx

∣∣ λ ∈ K}
(x ∈ E \ {0}) contains an origin-centered segment in A, ie. {αx

∣∣ |α| < ε}, where

ε > 0. The definition is equivalent to that every origon kautta kulkeva suora {λx
∣∣

λ ∈ K} (x ∈ E \ {0}) sisältää jonkin 0-keskisen välin {αx
∣∣ |α| < ε}, where ε > 0.

(If K = C, the ”segment” looks more like a ”disk”’.)

2In some texts F(0).
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absorboiva
balansoitu
konveksi

absorboiva
ei balansoitu
konveksi

absorboiva
balansoitu
ei konveksi

absorboimaton
balansoitu
konveksi

Kuva 1. Geometry in a vector space

A balanced set B ⊂ E is absorbing if and only if

E =
⋃
α>0

αB

Definition 1.11. A subset A ⊂ E is convex , if and only if it contains all segments
between its points:

x ∈ A, y ∈ A, 0 < α < 1 =⇒ αx+ (1− α)y ∈ A.
The convex hull of a set A ⊂ E is the smallest convex set containing A.

It exists, since the intersection of arbitrarily (even∞) many convex sets is convex.
So

co(A) =
⋂
{B
∣∣ B is convex and B ⊃ A}.

Theorem 1.12. The neighbourhood filter of the origin has the following properties:

A ∈ U0 =⇒ A is absorbing.(1.3)

∀A ∈ U0 ∃B ∈ U0 : B +B ⊂ A.(1.4)

∀A ∈ U0 ∃B ∈ U0 : B is balanced and closed and B ⊂ A.(1.5)

Proof. (1.3): Let x ∈ E. By continuity if the product and 0x = 0, there exists an
interval

B = BK(0, ε) = {α ∈ K
∣∣ |α| < ε}

around the origin 0 ∈ K such, that

Bx ⊂ A.

(1.4): Addition + : E × E → E is continuous and +(0, 0) = 0 + 0 = 0. Therefore
there exists a standard basis neighbourhood of (0, 0), like W = C ×D such, that

C +D = +(C ×D) ⊂ A

Choose B = C ∩D.

(1.5): It is sufficient to prove that

(i) ∀A ∈ U0 ∃ balanced B ∈ U0 : B ⊂ A,
(ii) ∀A ∈ U0 ∃ closed S ∈ U0 : S ⊂ A,
(iii) A balanced =⇒ A balanced.

All these are true:
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(i) The product map · : K×E → E is continuous and · (0K, 0E) = 0. Therefore
in the product topology there exists a neighbourhood of the origin (0K, 0E)
like W = C ×D such, that

CD = · (C ×D) ⊂ A

here C can be chosen to be

C = BK(0, ε).

Now we can choose B =
⋃
|α|≤ε εD. It works!.

(ii) We have proved that we can assume A is balanced. Also, we already know
there exists a balanced neighbourhood of the origin B such, that B+B ⊂ A.
Now S := B ⊂ A, since

x ∈ S =⇒ ∅ 6= B ∩ (x+B)

=⇒ ∃x, y ∈ B : z = x+ y

=⇒ ∃x, y ∈ B : x = z − y ∈ B −B ⊂ B +B ⊂ A.

(iii) Let x ∈ A and 0 < |α| < 1, and U ∈ Uαx. By omotety invariance 1
α
U is a

neighbourhood of x, so
1

α
U ∩ A 6= ∅.

Let y ∈ 1
α
U ∩ A. Then

αy ∈ U ∩ αA ⊂ U ∩ A,

because A is balanced. �

Definition 1.13. Let X be a set.
a) A collection of F ⊂ P(X) is a filter , if it satisfies the filter axioms :

∅ /∈ F and F 6= ∅(1.6)

A,B ∈ F =⇒ A ∩B ∈ F(1.7)

A ⊃ B ∈ F =⇒ A ∈ F(1.8)

b) A subset of a filter K ⊂ F is its filter basis , if every set in the filter contains a
basis set. The same is called: the filter is spanned by the basis.
c) A collection of subsets K ⊂ P(X) is an abstract filter basis , if it satisfies the
filter basis -axioms :

∅ /∈ K and K 6= ∅(1.9)

A,B ∈ K =⇒ ∃C ∈ K : C ⊂ A ∩B(1.10)

Evidently, each basis of a filter satisfie such that ese axioms and each abstract filter
basis spans a filter consisting of all its supsets.
d) The open sets of a topological space are defined by all neighbourhoods of all
points. One can define a topology by giving the neighbourhood filter Ux for all
points x ∈ X. To get a topology, onee needs to have:

Y1) U ∈ Ux =⇒ x ∈ U
Y2) U ∈ Ux =⇒ ∃V ∈ Ux such, that for all y ∈ V is V ∈ Uy.
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Theorem 1.14. If E is a vector space and F is filter, whose all elements are i)
absorbing sets and

ii) each of them contains a balanced set in F and
iii) for all A ∈ F there exists B ∈ F such, that B +B ⊂ A, and
iv) for all α ∈ K \ {0} and A ∈ Fholds: αA ∈ F ,

then there exists exactly one topology in E such that (E, T ) is a topological vector
space and

F = U0.

Proof. If it exists, then every neighbourhood filter must be Ux = x+U0x+F , so
this is the only possible topology. Let us prove that it makes E a topological vector
space .

First prove that the Ux = x + F form a topology at all. We must verify Y1) and
Y2) in 1.13 d) . Since F consists of absorbing sets, they all contain the origin, so at
least x ∈ U for all U ∈ x + F , jso Y1) is OK. If U = x + A ∈ x + F , then by iii)
there exists B ∈ F such, that B + B ⊂ A. Let us prove that for all y ∈ V = x+ B
we have U ∈ Uy. Easy:

U = x+ A ⊃ x+B +B = V +B ⊃ y +B ∈ Uy.
to select B ∈ F such, that B +B ⊂ A, and notice

+((x, y) +B ×B) = x+ y +B +B ⊂ (x+ y) + A.

Continuity of multiplication can be proved similarly by ii), iii) and iv). this You
can do as an exercise, since there is a more challenging way to do it, namely without
using iv) at all. As a corollary we understand that iv) follows from the other three.

Let x0 ∈ E, λ0 ∈ K and A ∈ F . Try to find B ∈ F and ε > 0 such, that
([λ− ε, λ+ ε]× (x0 +B) is mapped inside λ0x0 + A by multiplication.

Choose n ∈ N∗ such, that |λ0| < n. By induction: there exists a balanced B ∈ F
such, that B +B + · · ·+B (n+ 2 kpl) ⊂ A. Since B is absorbing, there exists a
number ε ∈]0, 1] such, that |λ| ≤ ε =⇒ λx0 ∈ B. Since B is balanced and |λ0

n
| ≤ 1,

we have

x ∈ B =⇒ λ0x = n
λ0

n
x ∈ nB ⊂ B +B + · · ·+B (n kpl).

So |λ| ≤ ε and x ∈ B =⇒
(λ0 + λ)(x0 + x) = λ0x0 + λ0x+ λx0 + λx

∈ λ0x0 + (B + · · ·+B) (n kpl) +B +B ⊂ λ0x0 + A. �

Remark 1.15. Background information

• Filters:
– {B ⊂ X

∣∣ A ⊂ b}
– Fréchet filter {B ⊂ N

∣∣ N \ A is finite}
– Image of filter : If F ⊂ P(X) is a filter and φ : X → Y is a mapping, then
{φ(A)

∣∣ A ∈ F} is a filter basis in F . It spans what is called the image φ(F)
of F .
– A sequence filter is the image of a Fréchet filter in a mapping N → X
(which is a sequence).
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y

x

Kuva 2. Distinct meighbouthoods

– An ultrafilter also called a maximal filter is a filter, where you can add no
more set without it becoming no filter anymore.
• Filter convergence: In a topological space, a filter F ⊂ P(X) converges to
x ∈ X, if Ux ⊂ F .
• Filter basis convergence: In a topological space, a filter basis K ⊂ P(X)

converges to x ∈ X, if for all U ∈ Ux there exists B ∈ K such, that B ⊂ A.
this is equivalent to the filter spanned by K converging to x.
• Same concepts! in a topological space, a sequence filter converges if and only

if the sequence converges (to the same point x).
• Importance: in a topological space, filters replace sequences for characterizing

various objects like we use sequences in metric spaces. Example: apoint x
belongs to the closure Ā if and only if there exists a filter basis of sets in A
converging to x.

1.3. Finite dimensional topological vector spaces.

Definition 1.16. A topological space (X, T ) is Hausdorff3 also called T2, if two
distinct points always have disjoint neighbourhoods.

Example: A metric space is always Hausdorff. In any set, the discrete topology is
always Hausdorff.

A topological space is Hausdorff if and only if no filter has more than one limit.
A topological vector space is Hausdorff if and only if all 1-point sets are closed.4

Theorem 1.17. (Tihonov 1935 )5 Every n-dimensional topological Hausdorff–
vector space (E, T ) is llinearly homeomorphic to Euclidean space Kn kanssa.

Proof. Let (e1, . . . , en) be a basis of the vector space E Every mapping .

K→ E : λ 7→ λei

is continuous. Therefore

K2 → E × E → E

(λ1, λ2) 7→ (λ1e1, λ2e2) 7→ λ1e1 + λ2e2

3Felix Hausdorff 1868–1942, Germany.
4In a genaral top space this is false.
5Tihonov, Andrei Nikolajevitš 1906-1993, Venäjä
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is continuous. Notice: the product topology is Kn: is the Euclidean topology. IBy
induction:

Kn → E × E → E

(λ1, . . . , λn) 7→
n∑
i=1

λiei

is continuous. Also it is a linear isomorhism, so we can take E = Kn and T The claim
i such that at T is equal tot the Euclidean topology Te. We only have to prove that
the identical mapping (Kn, Te) → (Kn, T ) is a homeomorphism. We know already
that it is continuous. Therefore, the Euclidean unit sphere S = SE is Te is compact
not only in the Euclicean topology but also in T . Cover S by choosing for each
x ∈ S a T - open neiighbourhood Ax ∈ Ux and at the same time use T2 to choose a
neighbourhood of the origin ö Bx ∈ U0 such that Ax ∩ Bx = ∅. There exists a finite
sub-cover

Ax1 ∪ · · · ∪ Axn
and a neighbourhood of the origin not intersectiing the cover:

B := Bx1 ∩ · · · ∩Bxn .

B contains a balanced neighbourhood of the origin C ∈ U0, which is connected, and
therefore conained in the Euclidean ball B‖·‖. the icdntical mapping (E, T )→ (E, Te)
i such that erefore continuous. �

0

x1
Ax

1

x
3

Ax 3

x2
Ax

2

SEB

Axn xn

Kuva 3. Cover

2. Locally convex spaces

2.1. Seminorms and semiballs.

Definition 2.1. In a vector space E a seminorm eli puolinorm is a mapping p :
E → R, for which ∀x, y ∈ E and λ ∈ K

p(x) ≥ 0(2.1)

p(λx) = |λ|p(x)(2.2)

p(x+ y) ≤ p(x) + p(y).(2.3)

Remark: also:
|p(x)− p(y)| ≤ p(x− y).
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If p(x) = 0 =⇒ x = 0, then p is norm. If p is a seminorm, x ∈ E and r > 0, the
set Bp(x, r) = {y ∈ E

∣∣ p(x− y) < r} is called a (x-centerd, r–radius) open semiball

and B̄p(x, r) = {y ∈ E
∣∣ p(x−y) ≤ r} the corresponding closed semiball . 0-centered

semiballs are denoted Bp(r) and B̄p(r), unit 0-centered semiballs Bp and B̄p.
There is a natural lordering among seminorms inE namely : p ≤ qifandonlyifp(x) ≤

(x)∀x ∈ E. Sufficient for this is p(x) ≤ (x)∀x ∈ E, for which q(x) ≤ 1 or just
q(x) ≤ 1 =⇒ p(x) ≤ 1, eli B̄q ⊂ B̄p.

A locally convex space is a vector space E with a family of seminorms N . The
family of seminormsN induces a locally convex topology which is the vector space to-
pology, jdefined by choosing all finite intersections of N semiballs as beighbourhoods
of the origin.

One can – of course – use closed semiballs as well.

Theorem 2.2. A topological vector space E is locally convex if and only if it has a
neighbourhood basis of the origin consisting of convex sets. If this is the case, there
even is a neighbourhood basis of the origin consisting of convex, absorbing, balanced
and closed sets. Such sets are called barrels.

Proof. On a locally convex space, consider the 0-centered closed semiballs.

Bp(o, ε) = {x ∈ E
∣∣ p(x) ≤ ε}

They are barrels! So are their finite intersections, and these form by a 1.14 a neigh-
bourhood basis of the origin in some vector space topology in E. lso, they are closed
in this topology, so they are barrels.

To construct the seminorms from the topology, consider a neighbourhood basis
Ko of the origin, consisting of convex sets, first construct a neighbourhood basis
of the origin, consisting of barrels. Take A ∈ U0. By theorem 1.12, there exists a
closed neighbourhood of the origin, S ⊂ A. By assumption, S contains a convex
neighbourhood of the origin, call it C and again by 1.12 there exists a balanced
neighbourhood of the origin B ⊂ C.

S
A Uo

Cco B
B

Kuva 4. A barrel- neighbourhood

The closed, convex hull of B, denoted coB has the properties we want:

(1) The convex hull of (any ) balanced set coB is balanced6. Of course, it is
convex, and B ⊂ coB ⊂ C ⊂ S.

6A little drawing in R2 can prove the balanced hull of a convex set is not convex in general. be
careful!
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(2) As the closure of a balanced set coB ⊂ S ⊂ A is balanced by the proof of
theorem 1.12 and of course closed and absorbing. We prove that it is convex:
Let x, y ∈ coB and z = αx+(1−α)y, where 0 < α < 1. Prove, that z ∈ coB.
Consider a neighbourhood of the origin V such that V + V ⊂ U . Because
x, y ∈ coB, there are vx and vy ∈ V such that x + vx and y + vy ∈ coB, so
z+(αvx+(1−α)vy) = α(x+vx)+(1−α)(y+vy) ∈ coB and αvx+(1−α)vy ∈
V + V ⊂ U , so inside z + U we have found a point belonging to coB.

The next — and last — step of the proof is the construction of a seminorm
beginning with a barrel. The barrel will become the closed unit semiball of the
seminorm: Let A ∈ U0 be a barrel, that is absorbing, balanced, closed and convex.
Define its gauge pA by

pA(x) = inf {λ > 0
∣∣ x ∈ λA}.

x

A

p  (x)=2,5 A

Kuva 5. The gauge

We verify that it is a seminorm and

x ∈ A if and only if pA(x) ≤ 1.

Al is easy, since

A absorbing =⇒ PA(x) <∞.
A balanced =⇒ PA is homogenous.

A convex =⇒ PA is subadditive (ie. satisfies the triangle inequality)

A closed =⇒ (x ∈ A if and only if pA(x) ≤ 1.) �

Next we characterize continuous seminorms in a locally convex space (E,N ). At
least the members of N are continuous, of course, and adding continuous semonorms
to Nwill not change the topology as N .

Theorem 2.3. let (E, T ) be a topological vector space and p a seminorm in E. The
following are equivaklent:

(1) p is continuous.
(2) Bp := {x ∈ E

∣∣ p(x) < 1} is open.

(3) Bp := {x ∈ E
∣∣ p(x) < 1} ∈ U0.

(4) Bp := {x ∈ E
∣∣ p(x) ≤ 1} ∈ U0.
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(5) p is bounded in some neighbourhood of the origin. A ∈ U0.
(6) p is continuous at 0.

If (E,N )is locally convex, then also the following are equivalent to the above:

(7) ∃ε > 0 and seminorms q1, . . . , qn ∈ N such that

ε(Bq1 ∩ · · · ∩Bqn) ⊂ Bp

(8) ∃ε > 0 ja ∃q1, . . . , qn ∈ N such that ∀x ∈ E
ε p(x) ≤ max{q1(x), . . . , qn(x)}.

(9) ∃ε > 0 ja ∃q1, . . . , qn ∈ N such that ∀x ∈ E
ε p(x) ≤ (q1(x) + · · ·+ qn(x)).

Proof. It is easy to check that (1)—(6) are equivalent, and in the locally con-
vex case tapauksessa (3) and (7) are equivalent. Prove tahat (7),(8) and (9) are
equivalent:
(i) For 2 seminorms in E:, say p and q we have

p(x) ≤ q(x)∀x ∈ E, eli p ≤ qifandonlyifBp ⊃ Bq

(ii) for seminorms q1, . . . qn also max{q1, . . . qn} is a seminorm and

Bmax{q1,...qn} = Bq1 ∩ · · · ∩Bqn .

(iii) for seminorms q1, . . . qn

max{q1, . . . qn} ≤ q1 + · · ·+ qn ≤ nmax{q1, . . . qn}.
�

2.2. Continuous linear mappings in locally convex spaces.

Theorem 2.4. Let (E, T ) be a topological vector space and (F,NF ) a locally convex
space and T : E → F a linear mapping. The following are equivalent:

(1) T is continuous
(2) For all p ∈ NF the mapping p ◦ T is a continuous seminorm in E.

In particular, if also (E,NE) is lokcally convex, then also equivalent:

(3) ∀p ∈ NF ∃ε > 0 ja ∃q1, . . . , qn ∈ NE such that ∀x ∈ E
ε p(Tx) ≤ (q1(x) + · · ·+ qn(x)).

Proof. (1) =⇒ (2): If T is continuous, then p ◦ T is continuous, since 7 every
seminorm spanning a locally convex topology p ∈ NF is continuous. Also, it is easy
to check that p ◦ T is a seminorm.

(2) =⇒ (1): Let U ∈ U0,F . By definition of a locally cojnvex space, there
exist p1, . . . , pn ∈ NF and r > 0 such that r

⋂n
i=1Bpi ⊂ U . By assumption (2)

every p ◦ T is continuous, so there exist Vi ∈ U0,E such that T (Vi) ⊂ Bpi . Now
T (
⋂n
i=1 rVi) ⊂ r

⋂n
i=1Bpi ⊂ U . We have found a neoighbourhood of the origin in E

which is mapped into the given U ∈ U0,F , so T is continuous at the origin, hence
everywhere.

7By 2.3
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(2) =⇒ (3): Let (E;NE) be locally convex and p ∈ NF . By (2) the mapping
p ◦ T is a continuous seminorm, so by (9) of the previous theorem it satisfies (3).

(3) =⇒ (1): Let us prove that for any open A ∈ U0,F there exista a neighbourhood
of the origin in (E,NE):stä which is mapped into A. By the definition of a locally
convex topology, we can assume A = Bp for some p ∈ NF . By (3) ∃ε > 0 and
∃q1, . . . , qn ∈ NE such that ∀x ∈ E

ε p(Tx) ≤ (q1(x) + · · ·+ qn(x)).

In particular for points x ∈ Bq1(0,
ε
n
) ∩ · · · ∩Bqn(0, ε

n
) is

ε p(Tx) ≤ ε

which mean such that at p(Tx) ≤ 1, in other words Tx ∈ Bp = A. �

Theorem 2.5. For a non-zero linear form f ∈ E ′ (same as alinear mapping f :
E → K) the following are equivalent 8:

(1) f ∈ E∗ meaning f is continuous
(2) Ker f is closed
(3) Ker f is not a dense subset 6= E
(4) f is bounded in some neighbourhood A ∈ U0.

Proof. Implications (1) =⇒ (2) =⇒ (3) are easy. Let us prove (3) =⇒
(4) =⇒ (1).

To begin with, notice the following easy facts:

• Linear mappings preserve balancedness: If A ⊂ E is balanced then its image
in a linear mapping is also balanced.
• in one dimensional space K the only balanbced sets are balls around the

origin, ∅ and K. So all balanced sets except K itself are bounded.

In the theorem’s setting f maps into K. The given neighbourhood of the origin A
conatins a closed balanced neighbourhood of the origin whose image T (A) ⊂ K
contains a balanced set, which is either bounded or K.

To prove (4) assume the contrary: No f(A) is bounded. So

f(A) = K ∀A ∈ U0.

So for all x ∈ E and A ∈ U0 f(x+A) = f(x) + f(A) = f(x) +K = K, and therefore
0 ∈ f(x+A) and Ker f ∩ (x+A) 6= ∅. So the kernel of f is dense and by (3) it is all
of K. So f = 0, which is impossible, since no neighbourhood of the origin is mapped
to a bounded set, let alone {0}.

The last implication (4) =⇒ (1) follows directly from (2) in teh previous
theorem and ehdosta (5) in 11.2.4., since | · | is a seminorm defining the topology of
the locally convex space K. �

Remark 2.6. The kernel of a nonzero linear form is always either closed or dense
depending on continuity. Inventing a noncontinuous linear form is nontrivial. (An
example was constructed in the lectures using a Hamel basis in Hilbert space.)

8NOTATION VARIES, UNCLEAR, E∗ ↔ F ′.
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3. Generalizations of theorems known from normed spaces

3.1. Separation theorems. We begin with the separation theorems by Mazur9

and Banach10 Thewse hold in any topological vector space with no extra conditions.

Theorem 3.1. Mazur’s extension theorem11

Let E be a topological vector space, ∅ 6= A ⊂ E a convex, open set, and M ⊂ E
an affine subspace such that M ∩ A = ∅. Tnen there exists a closed hyper space
H ⊂ E such that M ⊂ H and H ∩ A = ∅.

M

H
A

Proof. The commonly known proof from normed spaces can be copied. One first
has to check some easy lemmas:

(3.1.1.) In any topological vector space a convex set is pathwise connected, hence
connected.

(3.1.2.) In any topological vector space the closure of a convex set is convex.
(3.1.3.) In any topological vector space the interior of a convex set is convex (The

interior of C even contains the intervals between the interior points and
boundary points or points of C).

(3.1.5.) A linear algebraic projection from a topological vector space onto its subs-
pace (with the subspace topology) is not only continuous but also an open
mapping; images of open sets are open. To check openness: it is sufficient
that open neighbourhoods of points are mapped to neighbourhoods of the
image points. By translation invariances, it is sufficient to check this at the
origin. This is easy, since the image of an open neighbourhood of the origin
contains the intersection of the subspace and the open neighbourhood, which
is open in the subspace.

The main proof uses a Hamel bases (which exists by the axiom of choice):
By translation invariance, we may assume 0 ∈ M , so M is a linear subspace and

0 /∈ A. First also assume K = R.
For H we take a maximal element of the family of subspaces

A = {N ⊂ E
∣∣ N is a linear subspace , M ⊂ N, N ∩ A = ∅}.

ordered by inclusion”⊂”. A maximal element exists by Zorn’s lemma which is a
variant of the axiom of choice, and guarantees the existence of a maximal element,

9Stanis law Mazur, 1905 – 1981, Puola.
10Stefan Banach, 1992 – 1945, Puola.
11Vrt.XX
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if every totally ordered subset B ⊂ A has an upper bound in A. And it has —
obviously the union of all its elements

⋃
B is in A and is an upper bound of B.

The maximal subspace H satisfies all our wishes — we just have to check that it
is a hyperplane.

The linear subspace H ⊂ E has a Hamel-basis K. Extend it to become a Hamel-
basis of E, call it L ⊃ K. Prove that the subspace F = 〈L \ K〉 spanned by the
”new” basis vectors is one dimensional: Consider the projection onto the subspace:

ϕ : E → F = 〈LrK〉 :
∑
x∈L

αxx 7→
∑

x∈LrK

αxx

This is an open mapping (lemma!) so it maps A: to an open, convex subset of F
– obviously not containing the origin. If F were at least 2-dimensional, we would
consider a suitable 2-dimensional subspace of F , which would contain a 2-dimenional
subspace S, not intersectiing the image set ϕ(A). (Easy in dimension 2. Just draw
a picture!) In that case we would have

M ⊂ H = ϕ−1({0})  ϕ−1(S)

and

ϕ−1(S) ∩ A = ∅
so the subspace ϕ−1(S)would be in conflict with the maximality of H. Therefore
dimF = 1 and H is a hyperplane. Of course H cannot be dense since it does not
intersect A. So it must be closed.

Thgis was the reeal version. For the complex version take a real hyperplaneH ⊃M
not intersectiing A Now

H ∩ iH

is a complex subspace, obviously a hyperplane, not intersecting A, so closed. �

Theorem 3.2. (Banach’s separation theorem) Let A and B be convex, disjoint,
A open. Then there exists a continuous linear form f and a real (!) number α ∈ R
such that

Re f(x) < α ∀x ∈ A ja

Re f(x) ≥ α ∀x ∈ B.

H
A

B

Re(f)>
Re(f)=

Re(f)<

Proof. Begin with the real version:
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If E is a real topological vector space, and A and B be convex, disjoint, A open.
Then there exists a continuous (real) linear form f f : E → R, which separates A
and B. By this we mean

f(A) ∩ f(B) = ∅.
Solution: We can assume A,B 6= ∅. The set

C = A−B = {a− b
∣∣ a ∈ A, b ∈ B} =

⋃
b∈B

(A− b)

is open, convex, and does not contain the origin. Apply Mazur to C and the zero
dimensional subspace M = {0}. So there exists a hyperplane H, not intersectiong C.
Take f a linear form with H = KerH. this does it, since f is continuous and if a ∈ A
andb ∈ B such that f(a) = f(b), then (a−b) ∈ (A−B)∩Ker (f) = (A−B)∩H = ∅.

The complex version: If f : E → C is complex linear, then its real part

g : E → R : g(x) = Re f(x) = 1
2
(f(x) + f(x))

is real linear (in general not complex linear). On the other hand, every real linear
form in a complex space g : E → R is the real part of the complex linear

f : E → C : x 7→ g(x)− ig(ix)

. So the real and complex linear forms of E can be identified with each other. Also,
it is clear that f and g are both continuous or both discontinuous. �

Hahn and Banach theorem. A reminder from Functional Analysis The
two theorems above are close to being equivalent to the famous Hahjn- Banach
theorems and are often proved as corollaries of Haahn-Banach. Let us (almost) do
the converse:

Theorem 3.3. (Hahn and Banach 1927-29.)12 Let F ⊂ E be a subspace in a normed
space and f : F → K a linear form such that

|f(x)| ≤ ‖x‖ ∀x ∈ F.
Then there exists a linear form g : E → K, such that

g(x) = f(x) ∀x ∈ F and

|g(x)| ≤ ‖x‖ ∀x ∈ E.

Proof. We can assume f 6= 0. Use Mazur is the open unit ball A = BE and the
F -hyperplane

M = {x ∈ F
∣∣ f(x) = 1}.

By Mazurwe extend M to a closed E-hyperplane H ⊃ M , not intersecting BE.
Because H∩F contains the F -hyperplane M , but is distinct of all of F (The subspace
F of Econtains the origin!) we get H ∩ F = M . define g to bethe linear form in E:
with value 1 in H. That works! �

The assumption in HB theorem mean such that at f : F → K is continuous in
Fand has norm ‖f‖ = sup‖x‖≤1 |f(x)| ≤ 1. So Hahn– Banach tells us, such a form
has an extension g to all of E with norm 1. In particular, g is continuous.

12Hans Hahn 1879–1934, Austria.
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M

H

A=B
E

f=1

F

Kuva 6. Corollary of Hahn and Banach theorem

Remark 3.4. Generalizations. In a normed space, every continuous linear forma
is a subspace can be extended to a continuous form is the whole space having the
same norm.

The image space was K so it can be any 1-dimensional space - and (going via
coordiantes) in fact any finite dimensional space (how about the norm - I have
forgotten. Be careful!) The theorem fails for infinite dimensional image space.

Hahn-Banachin lause holds in any seminormed space E. (one seminorm ) — of
course. In fact, in the real case it is sufficient to assume that E is a vector space and
there exists a positive sublinear mapping in other words a mapping like a seminorm
but we assume homogeneity only for positive coefficients: ‖λx‖ = |λ|‖x‖ for λ > 0.

This is the best known version of HB, and generally proven directly by applying
Zorn in the real case and then reducing the complex to the real case.

So Mazur extension, Banachin separation and Hahn–Banach do work in (lc) to-
pological vector spaces, BUT THEY FAIL IN GENERAL topological vector space
. Counterexample . There are no nonzero continuous linear forms at all in `p for
0 < p < 1.

Important consequences. The theorem has several important consequences, so-
me of which are also sometimes called ”Hahn–Banach theorem”:

* If V is a normed vector space with linear subspace U (not necessarily closed) and
if T : U → K is continuous and linear, then there exists an extension T ′ : V → K
of T which is also continuous and linear and which has the same norm as T (see
Banach space for a discussion of the norm of a linear map). In other words, in the
category of normed vector spaces, the space K is an injective object. * If V is a
normed vector space with linear subspace U (not necessarily closed) and if z is an
element of V not in the closure of U , then there exists a continuous linear map
T ′ : V → K with T ′(x) = 0 for all x in U , T ′(z) = 1, and ‖T ′‖ = 1? dist(z, U). *
In particular, if V is a normed vector space and if z is any element of V , then there
exists a continuous linear map T ′ : V → K with T ′(z) = ‖z‖ and ‖T ′‖ ≤ 1. This
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implie such that at the natural injection J from a normed space V into its double
dual V ∗∗ is isometric.

Hahn-Banach separation theorem. Another version of Hahn–Banach theorem
is known as Hahn-Banach separation theorem.[2] It has numerous uses in convex
geometry [3] and it is derived from the original form of the theorem.

Theorem: Let V be a topological vector space over K = R or C, and A,B convex,
non-empty subsets of V . Assume that A ∩B = ∅. Then

(i) If A is open, then there exists a continuous linear map λ : V → K and t ∈ R
such that Re λ(a) < t ≤ Re λ(b) for all a ∈ A, b ∈ B

(ii) If V is locally convex, A is compact, and B closed, then there exists a conti-
nuous linear map λ : V → K and s, t ∈ R such that Re λ(a) < t < s < Re λ(b) for
all a ∈ A, b ∈ B.

Another consequence of HB:

Theorem 3.5. Let E be a locally convex space and F its closed subspace and x ∈
E \ F . then there exists a continuous lin form x∗ ∈ E∗ such that

〈x, x∗〉 = 1 and

〈y, x∗〉 = 0 ∀y ∈ F.

Proof. Use Mazur choosing for A an open, convex neighbourhood of x not inter-
secting F . �

4. Metrizability and completeness (Frèchet spaces)

Remember from (functional) analysis:

Theorem 4.1. Baire category theorem: Any complete metric space is of the 2.
Baire category. In particular, A topological vector space is 2. Baire category, if its
topology is given by some metric and it is complete in this metric.

We will define the concepts (category) and sketch a proof (known from (functional)
analysis courses). But i such that is useful? Not yet. We will find out how to check
metrizability and completeness? At least for locally convex space such that ere is
nice theory. The main applications — the open mapping theorem and the closed
graph theorem will be proven as consequences of the Barrel theorem.

4.1. Baire’s category theorem.

Definition 4.2. Consider a topological space X.

(1) A subset M ⊂ X is dense in X, if M = X.
(2) A set M ⊂ Xis nowhere dense, in X, if its closure has no interior points,

same as if the complement X rM of the closure is dense X rM = X In
particular a closed set is nowhere dense in X when it has no interior points.

(3) A set M ⊂ X belongs to the 1. Bairen category in X, if it is the union of
countably many nowhere dense sets.

(4) All oher sets o M ⊂ X belong to the 2. Bairen category in X.
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Example 4.3. a) Q in R is a 1 category set.
b) Baire’s theorem will prove that R in R is a 2. category set.

Theorem 4.4. (Cantor’s lemma) A metric space (X,d) is complete if and only if
for any closed sets X ⊃ S1 ⊃ S2 ⊃ . . . with diam(Sn)→ 0, we have⋂

n∈N

Sn 6= ∅.

Here diam(S) is the diameter of the set S

diam(S) = sup{d(x, y)
∣∣ x, y ∈ S}.

Proof. Consider first X complete and the closed sets as above By choosing for
each n ∈ N an element xn ∈ Sn we get a Cauchy-sequence13 , whose limit onis in
the intersectionof the sets Sn.

Consider the case when the condition is true. Prove that any Cauchy–sequence in
XBy choosing

Sn = {xm
∣∣ m ≥ n}

one can use the assumption and it is easy to verify that the element in the intersection
is the limit. �

Theorem 4.5. Consider a complete metric space X and a sequence An of open
dense subsets. Then the intersection

A =
⋂
n∈N

An

is dense, in particular nonempty.

Proof. Consider an open ball B(x, r)in X. Prove that

B(x, r) ∩ A 6= ∅.

Since A1 is dense and B(x, r) open, the intersection A1 ∩ B(x, r) is nonempty —
and also open. So there exists a ball B(x1, r1), whose closure S1 is contained in
the set A1 ∩ B(x, r). Since also A2 is dense and B(x1, r1) open, the intersection
A1 ∩ B(x1, r1) is nonempty — and open. So there exists a ball B(x2, r2), whose
closure S2 is included in A2 ∩ B(x1, r1). Repeat this to find a sequence sisäkkäisiä
of nested sets Sn. The radii rn can be chosen such that rn → 0. By Cantor,⋂

n∈N

Sn 6= ∅.

This proves it. �

Theorem 4.6. (Baire’s category theorem ) No complete metric space X is of
the first category but all are of the 2.

13Augustin Louis Cauchy 1789–1857, Ranska.



topological vector space 2010 21

Proof. This is the lemma resatated. Consider X 1 cat.,

X =
⋃
n∈N

Mn =
⋃
n∈N

Mn, ts.

∅ = X rX =
⋂
n∈N

(X rMn).

The sets X rMn are open and dense. By the lemma, their intersection is nonempty
. �

4.2. Complete topological vector spaces. In a nonmetrical space ”Cauchy”must
be redefined. We will also replace sequences by filters for the general case.

Definition 4.7. .

(1) A filter or filter basis F in a topological space A ⊂ E is a Cauchy-filter(basis),
if for all neighbourhoods of the origin U ∈ U0 there exists a set M ∈ F such
that M −M ⊂ U . Remark: Often A = E.

(2) A subset A ⊂ E of a topological vector space is complete, if its every Cauchy-
filter (or filterbasis) F converges to some point in A:. ( For a filter F →
xifandonlyifUx ⊂ F , for a filter basis : F → xifandonlyif∀U ∈ Ux ∃A ⊂
F , A ⊂ U.

(3) In a topological vector space (E, T ), a sequence (xn)n∈N is a Cauchy-sequence,
if for every neighbourhood of the origin A ∈ U0 there exists a number nA ∈ N,
for which

n,m > nA =⇒ (xn − xm) ∈ A.
(4) A subset A ⊂ E of a topological vector space is sequentially complete, if its

every Cauchy-sequence F converges to some point in A.

Remark 4.8. i) A sequence is Cauchy-sequence if and only if the correspon-
ding lter is a Cauchy-filter.

ii) The neighbourhood filter is a Cauchy-filter.
iii) If F contains a Cauchy-filter, then F is a Cauchy-filter. In particular every

convergent filter is a Cauchy-filter.
iv) In a Hausdorff-topological vector space every complete set is closed.
v) In a complete space, every closed subset is complete.
vi) Continuous linear mappings map Cauchy-filterto Cauchy-filters.
vii) The trace of a Cauchy-filter F jälki in a subset A ⊂ E is the set family
FA = {A ∩B

∣∣ B ∈ F}. It is either a Cauchy– filter or FA 3 ∅.
Proof. Only iv) and v) are slightly nontrivial

iv) Consider a complete subset A ⊂ E and an element x ∈ Ā. Let B = {U ∩ A
∣∣

U ∈ Ux}. By assumption no element of B is the empty set, j so B is a filter in A, in
fact a Cauchy-filter: Check it: for each U ′ ∈ U0 there exists M = U ∩ A ∈ B such
that M −M = (U ∩A)− (U ∩A) ⊂ U − U ⊂ U ′. Since A is complete, B converges
to some point in Y in A. As a filter basis B → x and B → y, so by Hausdorff x = y.
(In a Hausdorffspace all limits are unique (well known and easy) ).

v) Assume now, that E is complete and A ⊂ E is closed and B is a Cauchy-filter
in A. Then B is a Cauchy-filterbasis in avaruuden E, and converges to some x ∈ E.
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of course x ∈ Ā = A, since for all U ∈ Ux there exists a subset B ∈ B, consisting of
nonempty subsets of A, so U ∩ A 6= ∅.

4.3. Metrizable locally convex spaces.

Theorem 4.9. A topological vector space is of 2 category if its topology comes from
some metric, and the space is complete in that metric.

Proof. Baire �
This theorem is almost useless unless we find a way to check metrizability and

completeness in the metric. Fortunately, this works at least for locally convex spaces.

Theorem 4.10. Consider (E, T ), a topological vector space, locally convex and
Hausdorff. The following are equivalent:

(i) There exist(s) a neighbourhood basis U0, of T which is countable.
(ii) There exist(s) a defining (countable) sequence N of seminorms defining the

topology T .
(iii) There exist(s) a basis P of continuous seminorms, which is not only countable

but also ordered increasingly p1 ≤ p2 ≤ . . . .
(iv) In E there exists a metric d, which is translation invariantt

d(x, y) = d(x+ z, y + z) ∀x, y, z ∈ E,

and who defines the topology T .
(v) In E there exists metric d, who defines the topology T .

Inthis case we call E a matrizable locally convex space .

Proof. The main step is iii)→ iv). : (By Banach himself): If N = {p1, p2, . . . },
then, then this is the metric:

d(x, y) =
∞∑
k=1

1

2k
pk(x− y)

1 + pk(x− y)
.

(Check it!)
If E is metrizable, then take balls around the origin

Bn = Bd(0,
1

n
).

Each of these contains a neighbourhood which is barrel Bn ⊃ An ∈ U0. The gauges
of the barrels An are a countable seminorm family giving the metric’s topology T .
Check it! �

Example 4.11. Banach’s sequence space E = {x = (xn)N
∣∣ xn ∈ K} = KN with

seminorms pk(x) = |xk| is metrizable.
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4.4. Fréchet spaces. Remeber that in a topological space E a sequence (xn)n∈N is
called a Cauchy-sequence, if for all A ∈ U0 there exists a number nA ∈ N, for which

n,m > nA =⇒ (xn − xm) ∈ A,
and that a topological vector space E is sequentially complete, if its every Cauchy-
sequence converges.

Theorem 4.12. A sequence in a metrizable locally convex space is a Cauchy-
sequence if and only if it is Cauchy-sequence in Banach’s metric d.

Proof. Possible exercise. �

A metrizable locally convex space (E,N ) is sequentially complete as a topological
vector space if and only if it is sequentially complete in Banach’s metric d.

Theorem 4.13. A metrizable locally convex space E is complete in the filter sense
as a topological vector space if and only if it is sequentially complete.

Proof. Completeness of course implies sequential completeness. [1.15].
Assume next, that the space (E,N ) has a countable neighbourhood basis of the

origin U1 ⊃ U2 ⊃ . . . and that every Cauchy-sequence in E converges. Consider a
Cauchy–filter F . We prove, that F converges.

By assumption, for all k ∈ N there exists Mk ∈ F such that Mk − Mk ⊂ Uk.
Define a sequence by choosing xn ∈M1 ∩M2 ∩ · · · ∩Mn. In this way we get a Cau-
chy–sequence: m,m′ ≥ n =⇒ xm − xm′ ∈ Mn −Mn ⊂ Un. JBy sq compl there
exists a limit x = limn→∞ xn. We prove, that F → x same as x+U0 ⊂ F . This mean
such that at for every point x the basis neighbourhood x + Un belongs to the filter
F , so for each n there exists M ⊂ x+Un belonging to the filter F . So M − x ⊂ Un.
Now use the information xn → x, guaranteeing that for every k there exists pk such
that xpk ∈ x+ Uk equivalently x ∈ xpk − Uk. So for all k

M − x ⊂ (M − xpk) + Uk,

Next we have to select a number k and a suitable pk and M ∈ F such that

(M − xpk) + Uk ⊂ Un.

This works: In the topological vector space E we can choose Uk ∈ U0 such that

Uk + Uk ⊂ Un.

Now try to arrange (M − xpk) ⊂ Uk. By the choice of the sequence (xn)N we have
xp ∈Mk, if p ≥ k. The number pk can we get the reason to choose M = Mk, so

(M − xpk) + Uk = (Mk − xpk) + Uk ⊂ (Mk −Mk) + Uk ⊂ Uk + Uk ⊂ Un.

�

Definition 4.14. A complete metrizable locally convex space is called a Fréchet
space .

Theorem 4.15. The isomorphic image of a Fréchet space is a Fréchet space,

Proof. [Why?] Easy. But notice, completeness is not preserved under general
homeomorphisms! 14 �

14The standard counterexample: R:n metrics |x − y| and |arctanx − arctan y| give diffferent
Cauchy-sequences, but the same topology. .
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4.5. Corollaries of Baire.

Theorem 4.16. Barrel theorem In a Fréchet-avaruudessa every barrel is a neigh-
bourhood of the origin.

Proof. Let T ⊂ E be a barrel. Since T is absorbing, E =
⋃
n∈N and so by Baire

and by being closed, T has an interior point x. Since T is balanced, also −x ∈ intT
and so by convexity of the interior 0 ∈ intT . �

Proof. Clever, short, by Baire!

Theorem 4.17. Open mapping theorem A continuous linear mapping between
Fréchet spaces is always an open mapping (ie. images of open sets are open)

Proof. We presented a short proof using the barrel theorem

Corollary 4.18. A continuous linear mapping between Fréchet spaces is open as a
mapping to its image if and only if the image is a closed subspace.

Proof. Corollary of open mapping theorem

Theorem 4.19. Closed graph theorem. A linear mapping T : E → F between
Fréchet spaces is continuous if and only if its graph Gr T = {(x, Tx)

∣∣ x ∈ E } is a
closed set in E × F .

Proof. Also a corollary of open mapping theorem

Definition 4.20. Consider a topological vector space E and a subset R ⊂ E. We
say that R is bounded , if every neighbourhood of the origin absorbs it:

∀A ∈ U0 ∃λ > 0 : R ⊂ λA.

R
A

2A

Example 4.21. Any finite set is bounded. The bal hull, the closure any subset and
a continuous linear image of a bounded set is bounded. In a locally convex space
also the convex hull is bounded.

Mostly semiballs are unbounded. By a theorem by Kolmogorov in 1935 , a locally
convex Hausdorff-space is finite dimensional if there exists a bounded set with an
interior point. (Am easy proof in hand written Finnish was given)

Definition 4.22. Let E and F be topological vector spaces and

Y ⊂ L(E,F )

a family of linear mappings.
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(a) We say that all mappings in Y are equicontinuous, or call the family Y itself
equicontinuous if:

∀A ∈ U0,F : ∃B ∈ U0,E such that

∀T ∈ Y : T (B) ⊂ A.

(b) Y is pointwise bounded , , if:

∀x ∈ E : Y(x) := {Tx
∣∣ T ∈ Y} is bounded.

Theorem 4.23. Banach-Steinhaus15 Let E and F be Fréchet spaces and

Y ⊂ L(E,F )

a family of linear mappings.
The following conditions are equivalent:

(1) Y is equicontinuous.
(2) Y is pointwise bounded.

Proof. (2) =⇒ (1): Consider A ∈ U0,F . Prove that⋂
T∈Y

T−1(A) ∈ U0,E. (∗)

As a lc space, F has a neighbourhood basis of barrels, so we may assume that A is a
barrel. Then the set

⋂
T∈Y T

−1(A) is a barrel, since it is obviuously balanced, closed
and convex, and also absorbing, because the family Y is pointwise bounded. By the
barrel theorem (∗) is true. �

5. Constructions of spaces from each other

5.1. Introduction. There are many ways to construct new spaces from old. Always
it is interesting to see which properities are preeserved — or possibly improved! Exx

• subspace
• factor space
• product space
• direct sum
• completion
• projective limit (inverse image object)
• inductive locally convex imit (image object)
• direct inductive limit
• dual (and more general Hom)

5.2. Subspaces.

Definition 5.1. A subspace of a topological vector space E is its linear subspace
M with the subspace topology induced ny E.

Theorem 5.2. The following are éasy to check:

(i) M is tva.
(ii) M inhrits from E the following properties

(a) Hausdorff

15W ladys law Hugo Dionizy Steinhaus 1887–1972, Puola
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(b) metrizable
(c) locally convex (seminorms restricted to subspace give topology)
(d) normable (has norm giving topology)

(iii) every continuous seminorm in M is the restriction of some continuous semi-
norm in E (Exercise - hands on, but not trivial)

(iv) if E is locally convex, then every continujous linear form on M is the re-
strictionof some continuous linear form aon E. (This is Hahn and Banach)

(v) the corresponding statement for linear mappings to infinite dimensional spaces
is false.

(vi) A subspace (except E itself) has no interior points, but may be dense.

5.3. Factor spaces.

Definition 5.3. A factor space of a topological vestor space Ewith respect to a
subspace H ⊂ E is linear algebraic factor space E/H with the factor spacetopology
τ , defined by the following equivalent conditions:

(i) τ is the finest topology, in which the canonical surjection φ : E → E/H is
continuous.

(ii) τ is the image of the topology in Eby the canonical surjection φ : E → E/H,
this meaning that a subset A ⊂ E/H is open if and only if φ−1(A) ⊂ E is
open.

(iii) τ is the tvs-topology with a 0-neighbourhood basis consisting of the images
of the 0 neighbourhoods of E in the canonical surjection φ : E → E/H, ie.

UE/H = {φ(U)
∣∣ U ∈ UE}.

Theorem 5.4. The following are easy to verify:

(i) The canonical surjection φ : E → E/H is continuous and open, but not even
in 2-dimensionall space E = R2 is it a closed mapping (closed to closed).

(ii) E/H is Hausdorff if and only if H ⊂ E is closed.

Theorem 5.5. A factor space E/H of a locally convex space E is locally convex.
The seminormas are constructed in the following way:

(1) Choose a seminorm family P defining the topology in E such that for all
p, q ∈ P there exists r ∈ P such that r ≥ max p, q. (This can be done and
gives a basis of origin-neighbourhoods defined by one seminorm each!)

(2) define for each p ∈ P a seminorm in E/H by

p̂(x+H) = inf
y∈x+H

p(y).

(3) Notice that this gives a seminorm family with the same property as originally:
it gives a basis of origin-neighbourhoods defined by one seminorm p̂ each in
the topology of E/H.

(4) Now it is not difficult to check tht you got the factor topology. In particular
(5) p̂ is a normi in the factor space E/Kerp.
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5.4. Product spaces.

Definition 5.6. In the product of topological spaces
∏

i∈I Xi the product topology
is defined by taking as a basis of open sets all products

∏
i∈I Ui, where every Ui ⊂ Xi

is open, and for all indices except finitely many we have Ui = Ei. All other open sets
are unions of the basis sets. The product topology is the coarsest topology in which
the projections πj :

∏
i∈I Xi → Xj : (xi)I 7→ xj are all continuous.

A product space of topological vector spaces
∏

i∈I Ei generally has the product
topology. (Exceptions exist,in particular some ”interior” open sums) More details
are given in the exercises.

Theorem 5.7. Every locally convex Hausdorff-space is isomorphic to (linear and
homeomorhpic) to some subspace of some product of Banach-spaces.

Proof. Not difficult. Given in lecture and the handwritten. To come later here.
XXXX. �

5.5. Direct sums.

Remark 5.8. Details of the ”inner direct sum” of two subspaces were discussed in
the exx. in partricular the topological direct sum.

Definition 5.9. The ”outer” direct sum of (possibly infinitely many) distinct topo-
logical vector spaces is the topological vector sunspace⊕

i∈I

Ei =
{

(xi)I ∈
∏
i∈I

∣∣ xi 6= 0 only for finitely many i
}

5.6. The completion.

Remark 5.10. Completeness was already discussed. Here we just remark that a
product space (or an ”outer” direct sum) is complete if and only if each ”factor” is
complete Byt fadtror spaces are generally not complete except in the metric case.
(Counterexample still missing XXXXX.)

Theorem 5.11. Let E and F be topological Hausdorff-spaces, F complete. Let A ⊂
E be a dense subspace and T : A → F a continuous linear mapping. Then there
exists exactly one continuous linear mapping S : E → F , whose restriction to the
space A is T .

Proof. Uniqueness follows from the fact that continuous functions coinciding in
a dense set coincide everywhere. Existence is easily proven in the metrizable case by
using Cauchy-sequences. The general construction must use Cauchy filters. Not too
bad either - done in the lectrures and the hand wsrtittten hand out. �

Theorem 5.12. Existence of completion. Let E be a topological vector space
and Hausdorff. Then there exists a completion, of E, that is a complete Hausdorff-
tvs Ê, whjose some dense subspace E1 is isomorphic to E. All completions of E are
isomorphic to each other.

Proof. [Proof idea] Thegeneral proof is involved and is omitted.16 In the locally
convex case, we can use 5.7, by which E is isomorphic to a subspace of some product

16Ks. Cf. Köthe §5.



28

of complete spaces — whichis complete — so its closure will work as completion.
Yniqueness is proven by using theorem 5.11. (Do it, or look at the hand written
text.)

5.7. Projektive limits.

Definition 5.13. Let X be a set and {fi : X → Xi

∣∣ i ∈ I} a family of mappings
from X to some topological spaces (Xi, τi). The projective topology spanned by the
mappings fi (i ∈ I) is the coarsest topology in E where every fi is continuous. A
sub-basis of this topology conists of the inverse images of open sets: f−1(Ui). The
other open sets are finite intersections of the su-basis sets and all unions of these
intersections.

Example 5.14. (1) The product topology is — by definition — an example of
projective topology.

(2) The subspace topology is — by definition — an example of projective topo-
logy (with respect ti the inclusion mapping).

(3) The weak topology is the projective topology of the mappings |〈·, x∗〉|. (So
completeness is not inherited, since we will prove (and it is well known) that
an infinite dimmensional Hilbert spadce is not weakly complete)

(4) If E is a vector space and every fi is a linear mapping into the topological
vector space Fi, then the projective topology makes Einto a tvs.

(5) If every Fi is locally convex, then the projective topology is also locally convex
with seminorms pij ◦ fi, where (pij)j defines the topology of Fi.

(6) Warnimg: A locally convx (E,P) has the coarsest locally convex topology,
where every seminorm p ∈ P is continuous, but this is generally not the
projective topology induced by the family P . A counterexample is given by
the usual absolute value norm R, in whose projective topology the interval
]0, 1[ is not open. (all open sets are symmetric)

Theorem 5.15. Projective topology heorem Let E be a vector space, with the
projective topology defined by the linear mappings fi : E → Fi (Fi tvs). Then a linear
mapping T from any topological vector space to E is continuous if and only if every
fi ◦ T is continuous.

Proof. Directly form the definitions! �

5.8. Inductive locally convex limits.

Definition 5.16. Let E be a vector space and {Ti : Fi → Ei
∣∣ i ∈ I} a family

of linear mappings from some lc spaces to E. The locally convex inductive (limit)
topology Ti (i ∈ I) is the finest locally convex (!) topology in E, where every Ti is
continuous. A bsis of 0 neighbourhoods is

BE = {U ⊂ E
∣∣ U is bal, konv, and abs and T−1

I (U) ∈ UEi ∀ i ∈ I}.

Example 5.17. (1) WARNING: In general the inductive locally convex topo-
logy differs from image topology in E, which is the finest topology, in which
the mappings Ti are all continuous. The reason for this i such that at the
image topology is usually not a lc tvs topology.

(2) The factor space topology is the lc with respect to the canonical surjection.
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(3)

Theorem 5.18. The inductive limes E of some barreled spaces Fi is barreled.

Proof. Directly form the definitions! �

Theorem 5.19. A space is called is called bornological, if every convex, balanced
set, which absorbs all bounded sets, is a neighbourhood of the origin .)

An inductive limit of bornological spaces is bornological.

Proof. Directly form the definitions! �

Theorem 5.20. Inductive lc topology theorem Let E be a vector space, and
equip it with the inductive lc topology with respect to some linear meppings fi : Fi →
E (Fi tva). Then

(i) any linear mapping T from E to any locally convex space E is continuous
if and only if every T ◦ Ti is continuous. In particular this is true for linear
forms E → K.

(ii) a seminorm p in E is continuous if and only if every p ◦ Ti is continuous
(always a seminorm).

Proof. Directly form the definitions, but begin with ii).

�

5.9. Direct inductive limits.

Definition 5.21. Let E1 ⊂ E2 ⊂ . . . be a sequence of nested, closed lc Hausdorff
spaces. The union E =

⋃
NEn with the inductive topology of the inclusion mappings

is called the direct inductive limit lim
−→
En of the spaces En.

Example 5.22. Main example: {Test functions for Schwarzin distributions.}Discus-
sion comes later.

6. Bounded sets

6.1. Bounded sets. We have alredy defined the concept of a bounded set in a tvs.
(At 4.20) To repeat: Let E be a topological vector space and R ⊂ E. A set R ⊂ E
is bounded , if every neighbourhood of the origin absorbs it:

∀U ∈ U0 ∃λ > 0 : R ⊂ λU.

Theorem 6.1. A subset A ⊂ E of a lc space (E,P) is bounded if and only if every
seminorm p ∈ P is a bounded function in the set joukossa A. This mean such that
at every p(A) is a bounded set of numbers.

Proof. Let A be bounded and p ∈ P . Now the semiball Up is aneighbourhood of
the origin, so ∃λ > 0 : R ⊂ λUp, and therefore p(A) ⊂ [−λ, λ].

Let every p be bounded and U ∈ U0. Choose a number ε > 0 and seminorms
pi ∈ P (i=1,2,. . . n) such that U ⊃ ε

⋂n
i=1 Upi . Since every pi is bounded in A, there

exists numbers λi > 0 such that pi(A) ⊂ [−λ, λ], so A ⊂
⋂n
i=1 λiUpi ⊂ λ

⋂n
i=1 Upi ,

where λ = maxi λi. So A ⊂ λ
⋂n
i=1 Upi ⊂

λ
ε
U . �

These examples of bounded sets weree already mentioned before at 4.20 (?) .

Example 6.2. Bounded:
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(1) finite set,
(2) compact set,
(3) balanced hull of bounded set,
(4) closure of bounded set,
(5) subset of bounded set
(6) continuous image of bounded set
(7) finite union of bounded sets
(8) finite sum of bounded sets
(9) in a locally convex space the convex hull of a bounded set.

Proof. Easy. �

Remark 6.3 (Warning). In other metrizable topological vector space such that
an normed spaces, metric balls are not bounded in this sense. of definition 4.20
mukaisessa topologisessa mielessä, by the Kolmogorov theorem :: j

Theorem 6.4. Any lc Hausdorff space with a bounded set having an interior point
is normable.

Proof. Let E locally convex. By the translation inbvariance of the topology, one
can take the interior point ti be the originm so there exists a bounded neighbourhood
U ∈ U0. There exists a barrel V ∈ U0, such that U ⊃ V . Let p be its gauge which is
a seminorm. By assumption p is bounded in U , so V ⊂ U ⊂ λV for some λ > 0. So p
defines already by itself the topology of E. By Hausdorff, seminorms is a norm. �

Definition 6.5. A subset of a topological space A ⊂ E is totally bounded , if for all
environments U ∈ U0 there exist finitely many points x1, . . . , xn such that

A ⊂
n⋃
i=1

(xi + U).

Example 6.6. he following are totally bounded:

(1) finite sets,
(2) compact sets,
(3) Cauchy-sequences
(4) a balanced hull of a totally bounded set
(5) a closure of a totally bounded set
(6) a subset of a totally bounded set
(7) a continuous image of a totally bounded set
(8) a finite union of a totally bounded set
(9) a finite sum of totally bounded set

(10) in a locally convex the convex hull of a totally bounded set

Every totally bounded set is bounded.

Proof. Mostly easy exercises. The convex hull is more difficult (I have to look for
a proof in books?)

Remark 6.7 (Warning). In a normed spacem the unit ball is bounded but never
totally bounded (except in finite dimension).

Definition 6.8. A set absorbing all bounded sets, is called a bornivorous set.
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6.2. Bounded linear mappings.

Definition 6.9. A linear mapping L : E → F is calledbounded, if it maps all
bounded sets to bounded sets.

Remark 6.10. A continuous linear mapping is bounded, but in some space such
that ere are also other bounded lin mappings. The next theorem gives a clue on to
find an example.

Theorem 6.11. A lc space E is bornological (Ks. kohta 5.19 tai alla), if and only
if for every locally convex space F every bounded linear mapping T : E → F is
continuous.

Proof. Let the locally convex space E be bornological. By the definition in 5.19
its every convex, balanced set, absorbing all bounded sets (so every convex, balanced,
bornivorous set) is a neighbourhood of the origin. Let T : E → F be a bounded
linear mapping, where F is locally convex. Let U ∈ UF . We can assume that U is
a barrel. Now T−1U is balanced and convex, so it is sufficient to prove that it is
bornivorous. Let A ⊂ E be bounded. Then T (A) is by assuption bounded in F , so
T (A) ⊂ λU for some λ > 0. Obviously A ⊂ T−1(λU) = λT−1(U). So T−1(U) is a
neighbourhood of the origin, so T is continuous.

To prove the inverse, assume that every bounded linear mapping T : E → F is
continuous. Apply this ti the identical mapping T : E → E, where the image E
is equipped with a locally convex topology τ , where a basis of neighbourhoods of
the origin are all bounded, balanced, convex, bornivorous sets in E. Every originally
bounded set in E is bounded also in thei topology. So T is a bounded mapping, so
T is continuous, and so every balanced, convex, bornivorous set is a neighbourhood
of the origin in the original topology. �

Example 6.12. Every metrizable locally convex space E, in particular every normed
space is bornological.

Proof. Consider a countable basis U1 ⊃ U2 ⊃ . . . of neighbourhoods of the origin
in E. Let A ⊂ E be a convex, balanced, bornivorous set, so A absorbs all bounded
sets. Let us prove that A is aneighbourhood of the origin. It is sufficient to prove
that nA ⊃ Un for some n ∈ N. If not, then Un \ nA 6= ∅ for all n, so there exists a
sequence of points xn ∈ Un\nA. Then xn → 0, so (xn)N is bounded and so A absorbs
it and there exists λ > 0, for which every xn ∈ λA. Choose m ∈ N larger than λ, so
every xn ∈ mA. In particular xm ∈ mA in contradiction to the construction of the
sequence (xn). �.

Corollary 6.13. A linear mapping from a normed space to a locally convex spacde
is continuous if and only if it maps the unit sphere to a bounded set.

7. Duals, dual pairs and dual topologies

7.1. Duals.

Definition 7.1. The (algebraic) dual of a vector space E is the vector space E ′ =
{f : E → K

∣∣ f is a linear mapping }. clearly E ′ ⊂ KE. For x ∈ E and x′ ∈ E ′, we
often write

x′(x) = 〈x, x′〉.
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The (topological) dual of a topological vector space E is the vector space E∗ =
{f : E → K

∣∣ f is a continuous linear mapping }. Obviously E∗ ⊂ E ′.

The weak topology is the subspace topology from the product topology in KE.
In E ′ it is denoted σ(E ′, E) and in E∗ σ(E,E∗). The reason for this notaion comes
from the generalizzations considered below.

7.2. Dual pairs.

Definition 7.2. (a) Let E and F be vector spaces. A mapping

〈·, ·〉 : E × F → K
is called a

(1) bilinear form or a
(2) duality ; we also say that
(3) ((E,F ), 〈·, ·〉) is a dual pair ,

if all partial mappings

〈·, y〉 : E → K : x 7→ 〈x, y〉 and

〈 : F → K : y 7→ 〈x, y〉
are linear. This mean such that at 〈·, y〉 ∈ E ′ and 〈·, y〉 ∈ F ′.
Example 7.3. Examples of dualities.

a) Any vector space and its algebraic dual have a canonical duality

E × E ′ → K : (x, x′) 7→ 〈x, x′ 〉 = x′(x).

b) If E is a topological vector space, then also the restriction of the canonival
duality to the pair (E,E∗) is called a canonical duality .

c) Inner products are (separable) dualities.more later

Remark 7.4. The mappings E → F ′ : x 7→ 〈x, ·〉 and F → E ′ : x 7→ ·, y〉 are linear,
generally neither in- nor surjective. Injektiity is called ”separation” and surjectivity
has to do with ”reflexivity”.

Definition 7.5. A duality 〈·, ·〉 is separating or separates (points in ) F , if for all
x ∈ E \ {0} there exists x ∈ E, such that 〈x, y〉 6= 0. In the same way for E. The
duality is separable if it separates both sides.

Remark 7.6. A duality 〈·, ·〉 separates F , if it satisfies the following equivalent
conditions:

(1) If 〈x, y〉 = 0 for all x ∈ E, then y = 0.
(2) Ker (E → F ′ : x 7→ 〈x, ·〉) = {0}.
(3) The mapping E → F ′ : x 7→ 〈x, ·〉 is an injection, so as a vector spadce we

cdan interprete E ⊂ F ′. (No topology here, the, algebraic dual!)

similarly for E avaruuden E.

Example 7.7. The canonical algebraic duality (E,E ′) obviously separates E ′ and
so does (E,E∗) for E∗. The canonical algebraic duality (E,E ′) also separates E,
which can be checked using a Hamel basis, since the Hamel coordinates do it. But
the topological canonical duality (E,E∗) does NOT always separate E, in fact the
dual E∗ coulod be {0}. For locally convex space such that is problem does not arise:
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Theorem 7.8. For a locally vonvex Hausdorff–space, in particular a normed space,
the canonical duality (E,E∗) separates E∗:n.

Proof. Apply Hahn–Banach.s corollary 3.5. (XXX)

7.3. Weak topologies in dualities.

Definition 7.9. The weak topology in E from a duality ((E,F ), 〈·, ·〉) is denoted by

σ(E,F )

and defined as the lc topology in E by the seminorm family

{py = |〈·, y〉|
∣∣ y ∈ F}.

Sinilarly for F the weak topology σ(F,E) comes from the seminorms

{px = |〈x, ·〉|, x ∈ E}.

By ?? the weak topology σ(E,F ) is Hausdorff if and only if the eduality separates
E.

Remark 7.10. The weak topology is defined such that, for all y ∈ F , any linear
mapping 〈·, y〉 ∈ E ′ is continuous (E, σ(E,F ))→ K, same as

〈·, y〉 ∈ E∗σ(E,F ).

This defines a linear mapping

F → E∗σ(E,F ) : y 7→ 〈·, y〉.
This mapping is — by definition – an injection if and only if the duality separates E.
By the following theorem 7.12 it is ALWAYS surjective. We need a linear algebraic
lemma:

Lemma 7.11. Let E be a vector space and E ′ its algebraic dual, and y, y1, . . . , yn ∈
E ′. The following conditions are equivalent to each other:

y is a linear combination of the linear formsy1, . . . , yn.(7.1)

Ker (y) ⊃ Ker (y1) ∩ · · · ∩Ker (yn)(7.2)

Proof. Assume that Ker (y) ⊃ Ker (y1) ∩ · · · ∩ Ker (yn). Osoitetaan induktiolla
n:n suhteen, että joillakin λ1, . . . , λn ∈ K is y =

∑n
i=1 λiyi.

Tapaus n = 1: Assume that Ker (y) ⊃ Ker (y1). We can assume that neither form
is 0, so their kernels are hyperplanes. Therefore Ker (y) = Ker (y1). The forms y and
y1 kcan be factored as

E/Ker y
ϕ↗ ↘ I

E K
ϕ1 ↘ ↗ I1

E/Ker y1

Since Ker (y) = Ker (y1), then E/Ker y1 = E/Ker y and so ϕ1 = ϕ. Since E/Ker y ∼
K, then E/Ker y is one dimensional, so the isomorfisms I and I1 differ by a constant
multiple only.
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Step n→ n+ 1: Let H = Ker yn+1 and gk = yk
∣∣
H

, g = y
∣∣
H

and g = y
∣∣
H

for all
k = 1, . . . , n+ 1. In H = Ker yn+1 by assumption Ker (g) ⊃ Ker (g1)∩ · · · ∩Ker (gn),
so for some λ1, . . . , λn ∈ K is g =

∑n
i=1 λigi. Since

H = Ker yn+1 ⊂ Ker
(
y −

n∑
i=1

λiyi
)
,

there exists λn+1 ∈ K, such that y −
∑n

i=1 λiyi = λn+1yn+1. �

Theorem 7.12. Let ((E,F ), 〈·, ·〉) be a duality. The natural mapping

F → E∗σ(E,F ) : y 7→ 〈·, y〉,

is a surjection.

Proof. Let x∗ ∈ E∗ := (E, σ(E,F ))∗. The seminorm |〈·, x∗〉| is continuous in the
seminorm spae (E, σ(E,F )), so bythe characdterization 2.3(9) there exists ε > 0
and topology σ(E,F ) defining seminorms

|〈·, y1〉|, . . . , |〈·, yn〉|,

with y1, . . . , yn ∈ F, such that for all x ∈ E

ε|〈·, x∗〉| < |〈·, y1〉|+ · · ·+ |〈·, yn〉|.

In particular

Ker 〈·, y1〉 ∩ · · · ∩Ker 〈·, yn〉 ⊂ Ker 〈·, x∗〉.
By the previous lemma 7.11 x∗ is a linear combination lineaarimuodoista of the liner
forms 〈·, yn〉, so there exist numbers α1, . . . , αn ∈ K, such that

∀x ∈ E : 〈x, x∗〉 =
n∑
i=1

〈x, αiyi〉

and so x∗ = 〈·,
∑n

i=1 αiyi〉 is an eloemt of the image of F . �

Corollary 7.13. (FAN I XX.) Let E be locally convex Hausdorff-space — for
example normed — and x∗ ∈ E ′ its linear form. The following are equivalent:

(i) x∗ is continuous, eli x∗ ∈ E∗.
(ii) the seminorm |〈·, x∗〉| is continuous.
(iii) x∗ is weakly continuous same as continuous as a mapping from E withthe

weqk topology σ(E,E∗) varustetusta avaruudesta to K.

Remark 7.14. BE CAREFUL: The dual E∗ in the sense of the topolgy σ(E∗, E)
mielessä — we coulod call it (E∗σ(E∗,E))

∗ — is in the case 7.13 the original space E,
and not E∗∗, unless E happens to be reflexive.

Theorem 7.15. Let ((E,F ), 〈·, ·〉) hbe a duality,separating E. The following are
equivalent:

(i) 〈·, ·〉 separates also F .
(ii) E is dense in F ′σ(F ′,E).
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Proof. Let (i) be true. Let f cbe a ontinuous linear form in F ′σ(F ′,E) such that

E ⊂ Ker f . Since f is continuous, Ker f is closed and so also Ē ⊂ Ker f . By the
surjectivity theorem 7.12 there exists y ∈ F such that f(y′) = 〈y′, y〉 for all y′ ∈ F ′.
In particular 〈y′, y〉 = 0 for all y′ ∈ E. Since theduality (E,F ) separates E we
conclude y = 0. So f = 0.

We know now that the only extensionof the zero form Ē → K to a continuous
linear form in F ′σ(F ′,E) is 0, so by Hahn-Banach 3.5 we must have Ē = F ′.

The proof of the inverse is a straight-forward verification. �

Theorem 7.16. Let ((E,F ), 〈·, ·〉) be a duality, separating F and let d ⊂ F be a
proper subspace. The weak topology σ(E,F ) is strictly finer than σ(E,G).

Proof. HT Use 7.12. �

Theorem 7.17. Let E be a vector space. (E ′, σ(E ′, E)) is algebraically and topolo-
gically isomorphic to KK, where K is a Hamel basis of E.

Proof. Every linear mapping x′ : E → K is determined by the values on the basis
vectors, and these can be any numbers. So x′ can be interpered as a mapping K → K
same as an element of KKthe topology is given by the seminorms of pointwise con-
vergence same as the absolute values of the evaluation functionals px(x

′) = |x′(x)|,
but in the product space KK the vector x goe such that roughonly a basisa and in E ′

all of E. But this makes no difference, since all vectors are finite linear combinations
of the basis vectors. �

Theorem 7.18. Let ((E,F ), 〈·, ·〉) be a duality, separating E, so ä E ⊂ F ′. Equip
the algebraic dual F ′ with the topology σ = σ(F ′, F ) and E with the topology σ =
σ(E,F ), ( so E ⊂ σ(F ′, F ) with induced subspace topology.) Now:

a) The completion of Eσ is the closure of E:in a F ′σ.
b) In particular, if the duality separates also F , then the completion of Eσ is F ′σ

itself.

Proof. a) Since K is complete, also every product space KK is complete, and by
the previous theorem 7.17 mukaan F ′σ(F ′,E) is isomorphic to such a product, so it is

complete. So the completion of E is the closure in F ′σ.
b) Assume that the duality is separates both sides, and remember that in this

case E is dense in F ′σ [7.15]. Therefore its closure is F ′σ. �

Corollary 7.19. A locllay convex Hausdorff-space E never is ”weakly complete”
unless it is finite dimensional.

Proof. Since E is a locally convex Hausdorff-space,the duality (E,E∗) is separa-
ting. (Ks. 7.8.) Therefore the completion of Eσ:n is the algebraic dual (E∗)′, which
in the infinite dimensional case is not only E. (HT: verifioi. XXX)

Theorem 7.20. Let (E,F ) be a separating dual pair. For a set A ⊂ E the following
are equivalent in the weak topology σ(E,F ):

(i) A is bounded.
(ii) In the completion Ẽσ the closure Ā is compact.
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Sometimes (not in all books) a subset, whose closure is compact, is called relatively
compact, and a set set, whose closure in the completion of the original space is com-
pact, is called precompact. In these words, the previous theorem expresse such that
at in the weak topology of a separating dual pair every bounded set is precompact.

(Obviously compact =⇒ relatively compact =⇒ precompact =⇒ totally
bounded =⇒ bounded. )

Proof. Every compact set is totally bounded, so also every relatively compact be
bounded. By ?? the completion of Eσ: is F ′σ ∼ KK and so A is bounded also in the
product topology of KK . Since the projections are continuous, every πα(A) ⊂ K is

bounded and so its closure is compact. So A ⊂
∏

α πα(A) ⊂
∏

α πα(A), jwhich by

Tihonov’s famous theorem is compact. So Ā is compact in the completion Ẽσ. �

7.4. Polars.

Remark 7.21. Remember form Functional analysis Alaoglu’s theorem by which the
unit ball of a normed space is weakly compact. We generalize it.

Definition 7.22. Let ((E,F ), 〈·, ·〉) be a dual pair .

(1) The polar of a set A ⊂ E is the set A◦ = {y ∈ F
∣∣ 〈x, y〉| ≤ 1 ∀x ∈ A }.

(2) The polar of the polar of A is denoted (A◦)◦ = A◦◦ and called the bipolar of
A.

(3) Two sets A ⊂ E and B ⊂ F are orthogonal to each other, if 〈x, y〉 = 0 eli
x ⊥ y for all x ∈ A and y ∈ B.

(4) The orthogonal complement of a set A ⊂ E is the set A⊥ = {y ∈ F
∣∣ 〈x, y〉 =

0 ∀x ∈ A }.

Remark 7.23. The polar A◦ and bipolar A◦◦ = (A◦)◦ have the following properties:

(i) A ⊂ B =⇒ B◦ ⊂ A◦.
(ii) (balA)◦ = A◦

(iii) A ⊂ A◦◦

(iv) A◦◦◦ = A◦

(v) A◦ is balanced, convex and σ(F,E)–closed.
(vi)

(⋃
i∈I Ai

)◦
=
⋂
i∈I A

◦
i .

(vii) (αA)◦ = 1
α
A◦

(viii) If A is a subspace, then A◦ = A⊥.
(ix) E◦ = {0} if and only if the duality separates F.
(x) A◦ is absorbing if and only if A is σ(E,F )− bounded

Proof. All directly from the definitions. In particular, a polar is weakly closed
since A◦ is the intersection of closed unit semiballs in the weak topology, {y ∈ F

∣∣
|〈x, ·〉| ≤ 1} (x ∈ A). Proving (x) iremember that in a lc space (in particular in weak
topologies) a set is bounded tasan silloin, kun every defining (or any continuous)
seminorm is bounded in the set.

Theorem 7.24. Banach–Alaoglu–Bourbaki In a tvs E, the polar of a neigh-
bourhood of the origin polar U◦ is weakly (same as σ(E∗, E)) compact.

Proof.
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The topological dual l E∗σ = E ′σ(E′,E) is a topological subspace of the algebraic

dual E ′σ(E′,E), so we only have to prove that U◦ is compact in the topology induced

by E ′σa. One may notice that U◦ is defined in the duality (E,E∗) But in fact the
polars of U are the same in both dualities (E,E∗) and (E,E ′), since if x′ ∈ E ′ such
that |〈·, x′〉| ≤ 1 in the neighbourhood of the origin U ⊂ E, then x is continuous so
x′ ∈ E∗. Since U ⊂ U◦◦, the bipolar U◦◦ is a neighbourhood of the origin and so
absorbing. By 7.23 (x) U◦ is bounded in E ′σ. Since the dualityu /E.E ′) separates,
we can use 7.20 to see that U◦ is compact in the completion of E ′σ, but E ′σ is already
complete. �

Corollary 7.25. llllll
”

,

Proof.
”

, �

Theorem 7.26. The bipolar of any set A is its balanced, convex σ(E,F )−closed
hull:

A◦◦ = co(bal(A))
σ
.

Proof. Since the convex hull of a balanced set is balanced, and the closure of a
convex, balanced set is convex and balanced, the set V := co(bal(A))

σ
on is the

smallest balanced, convex, σ(E,F )−closed set, containing A. By the previou such
that erem the bipolar A◦◦ is balanced, convex and σ(E,F )−closed, so it contains V .

The main result is the inverse inclusion. If it is false, then there exists

x ∈ A◦◦ \ V.

H

V=co(bal(A))

x

v

To be able to apply Banach’s separation theorem 3.2, take a convex open neighbour-
hood of x not intersectiong V . There exists an x∗ ∈ E∗ and a number α > 0 such
that

Re〈x∗, x〉 > 1 and

Re〈x∗, v〉 ≤ 1 ∀v ∈ V.
In particular

|〈x∗, x〉| > 1, s and(7.3)

〈x∗, v〉 6= α ∀α > 1, v ∈ V.(7.4)

Since the hull V is balanced, (2) implies

|〈x∗, v〉| ≤ 1 ∀ v ∈ V.
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On the other hand, the weak topology gives the dual (by 3.24 ?)

E∗ = F.

So x∗ ∈ V ◦. And by (1) : x∗ /∈ {x}◦ ⊃ A◦◦◦ = A◦. This is a contradiction.
Therefore

A ⊂ V =⇒ A◦ ⊃ V ◦.

�

Corollary 7.27. If B is balanced, convex and σ(E,F )-closed, then B◦◦ = B.

Corollary 7.28. If the sets Ai (i ∈ I) are balanced, convex and σ(E,F )-closed,
then (

⋂
i∈I A)◦ is the balanced, convex and σ(E,F )-closed hull of

⋃
i∈I A

◦.

Theorem 7.29. A convex subset S ⊂ E of a locally convex space is closed exactly
when it is weakly closed.

Proof. Exercise. Hint: Hahn-Banach-tyype theorem it is an intersection of closed
hyperplanes. �

Corollary 7.30. Let E be locally convex and ∅ 6= A ⊂ E. in the sense of the duality
(E,E∗) A◦◦ is the balanced, convex, closed hull of A.

Proof. By the bipolar theorem ?? A◦◦ is the balanced, convex, weakly closed hull
of the set A. By 7.29 it is closed also in the original topology of E. �

Theorem 7.31. Mackey’s theorem 17 A subset A ⊂ E of a locally convex
Hausdorff-space is bounded exactly when it is weakly, same as σ(E,E∗) –bounded.

Proof. Evidently every bounded set is weakly bounded, since the weak topology
σ = σ(E,E∗) is coarser than the original topology τ of E.

Let A be weakly eli σ(E,E∗)−r bounded. We have to prove, that every τ–
neighbourhood U of the origin absorbs A:n.

(i) Since E is locally convex we can assume, that U is a barrel.
(ii) By the bipolar theorem ?? U◦◦ = U .
(iii) U◦ is balanced and convex.
(iv) By Alaoglu-Bourbaki theorem 7.26 U◦ is σ(E∗, E) –compact.
(v) So U◦ is σ(E∗, E) – complete, since it is a compact subset of the complete

space (E ′, σ(E ′, E)) . (Ks also Treves p.53??)
(vi) As a σ(E∗, E) –compact set U◦ is evidently σ(E∗, E)–bounded.
(vii) Let us define E ′U◦ =

⋃
n∈N nU

◦ ⊂ E and equip it with the gauge of the
balanced, convex and absorbing (!) set U◦, which turns out to be a norm and
is denoted ‖ · ‖, since U◦ is bounded in the Hausdorff- topology σ(E∗, E).

(viii) (E∗U◦ , ‖ · ‖) is complete, therefore a Banach-space, see the lemma below(and
exercise set 7 or 6).

(ix) A is weakly = σ(E,E∗)−bounded means, that for all x∗ ∈ E∗ the linear
form 〈·, x∗〉 is bounded in the set A, so supx∈A |〈·, x∗〉| < ∞ at every point
x∗ ∈ E∗.

17George Whitelaw Mackey (February 1, 1916 in St. Louis, Missouri – March 15, 2006 in Bel-
mont, Massachusetts)
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(x) For all x ∈ E the linear form 〈x, ·〉 is evidently continuous in the space
E∗σ(E∗,E), so in particular A ⊂ E∗σ(E∗,E).

(xi) Since in the space (E∗U◦ , ‖ ·‖) clearly is a finer topology than the one induced
by the weark topology σ(E∗, E), the linear form 〈x, ·〉 is continuous also in
the also Banach space (E∗U◦ , ‖ · ‖).

(xii) The family of linear mappings {〈x, ·〉
∣∣ x ∈ A} ⊂ (E∗U◦ , ‖ · ‖)∗ satisfies

the assumptions in the principle of uniform boundedness (Banach-Steinhus)
??: it is pointwise bounded (ix) jfamily of continuous (xi) liner mappings
betweeen Fréchet spaces.

(xiii) Therefore the family {〈x, ·〉
∣∣ x ∈ A} is equicontinuous

sup
x∈A, x∗∈U◦

= λ <∞,

which means, that

A ⊂ λU◦◦ = λU.

So A is bounded. �

Theorem 7.32 (Lemma). Let E be a locally convex Hausdorff-space and B its
balanced, convex, bounded subset . Let us define EB =

⋃
n∈N nB ⊂ E and equip it

with the gauge of the bal, convex and absorbing (!) set B ⊂ EB mittausfunctionlla,
which is a norm ‖ · ‖. Let us assume, that B is complete in the topology induced by
(E, τ) . Claim: (EB, ‖ · ‖) is a Banach-space.

Proof. Let (xn)N be a Cauchy-sequence in the space (EB, ‖·‖). Since B is comple-
te, it is also closed and therefore a barrel in the topology τ of EB. So it is the closed
unit ball of its gauge = the unit ball inthe normed space (EB, ‖ · ‖). The Cauchy-
sequence (xn)N in the space (EB, ‖·‖) is bounded, so it is contained in some ball λB,
which is complete by assumption in the topology induced by (E, τ). Now (xn)N is a
Cauchy-sequence also in the space (E, τ), which follows from, that B to some vector
y ∈ λB ⊂ EB. But by assumption this implies convergence in the norm topology,
since for all ε > 0 we have ‖xn − y‖ ≤ ε for large enough n, since the norm ‖ · ‖ is
τ−continuous . (Check the proof once more)

7.5. Compatible topologies.

Definition 7.33. A locally convex topology τ in E is compatible with a duality
(E,F ), if

E∗τ = F.

Example 7.34. The original topology of a locally convex space is compatible with
σ(E,E∗). There are others!

a) If E is a locally convex Hausdorff-space, then the weak topology σ(E,E∗) is
the weakest topology, which is compatible with the duality (E,E∗).

b) If E is a ocally convex Hausdorff-space and τ is a locally convex topology,
which is finer than σ(E,E∗) and coarser than the original, then τ is compa-
tible with the duality (E,E∗).

Theorem 7.35. Let (E,F ) be a separable duality .
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(i) A convex set A ⊂ E has the same closure in all compatible topologies in
(E,F ).

(ii) E ha sthe same barrels in all topologies compatible with (E,F ) .

Proof. Exercise . 7.29.

7.6. Polar topologies.

Definition 7.36. Let (E,F ) be a separable duality and S a family of
weakly bounded sets in E set ja. The polar topology (spanned by S) is the locally

convex topology in F , who has a neighbourhood basis of the origin consisting of the
finite intersections of polars of the sets belonging to S, ie. :

US =
{
ε
⋂
I

A◦i
∣∣ Ai ∈ S, ε > 0 I finite

}
.

Synonyms: S– topology, topology of S-konvergecen, uniform convergence topology
in S–sets.

Example 7.37. a) The first example is any weak topology σ(F,E), which one gets
by choosing S = {A ⊂ E

∣∣ A is finite}, S = {A ⊂ E
∣∣ A has only one point } or

S = {A ⊂ E
∣∣ A is the balanced, convex hull of a finite set}. The weak topology is

the weakest S− topology for (E,F ).
b) The second example is the strong topology b(E,F ), which comes from S =
{A ⊂ E

∣∣ A is σ(E,F ) bounded}. Yhe strong topology is the finest S− topology
for (E,F ).

c) The usual topology in the dual of a normed space is a polar topology, which
one gets from a one element set S = {1-ball}.

d) The topology of compact convergence c(E,F ), comes from S = {A ⊂ E
∣∣ A

is σ(E,F ) compact}.
Remark 7.38. a) An S−topology is locally convex and defined by the gauges of
the polars A◦, A ∈ S, namely pA(y) = supx∈A |〈x, y〉|.

b) If S satisfies the conditions

(i) A,B ∈ S =⇒ ∃C ∈ S such, that A ∪B ⊂ C and
(ii) A ∈ S, λ ∈ K =⇒ ∃B ∈ S such, thatt λA ⊂ B,

then US = {A◦
∣∣ A ∈ S}.

c) If S satisfies the condition ⋃
S

A = E,

then the S-topology is finer than the weak topology σ(F,E) and therefore Hausdorff.
d) A necessary and sufficient condition for an S-topology to be Hausdorff is the

following:

(i) the duality (E,F ) separates F :n and
(ii) the linear hull of the union

⋃
S is weakly = σ(E,F )−dense in the space

E.(such sets are sometimes called total sets)

Proof. a)-c): Exercise . The following theorem proves the statements above: 7.39.
d) A locally convex topology is Hausdorff if and only if for everu nonzero vector

there exists a defining seminorm with value 6= 0 atx. In particular a S−topology is
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Hausdorff iff, that if pA(y) = 0 for all A ∈ S, then y = 0, same as A⊥ = {0} for all
A ∈ S, even shorter

⋂
A∈SA

⊥ = {0}.
Assume first that the S−topology is Hausdorff so

⋂
A∈SA

⊥ = {0}. If the duality
doesn’t separate F then there exists y ∈ F \ {0}, such that |〈x, y〉| = 0 for all
x ∈ E. In particular pA(y) = supx∈A |〈x, y〉| = 0 for all A ∈ S so y ∈

⋂
A∈SA

⊥ in
contradiction to the assumption. If again we assume that the linear hull of the union⋃

S, call it V , is not weakly= σ(E,F )−dense, then there exists x ∈ E not belonging
to V̄ . Using Mazur ?? there exists a continuous linear form f ∈ E∗, which has the
value 1 at x and vanishes in the space V̄ . By the surjectivity in ?? we can choose
y ∈ F such, that f(x) = 〈y, x〉 for all x ∈ E, so y ∈

⋂
A∈SA

⊥ \{0} in contradictionti
the assumption.

Assume next that thet (i) and (ii) are true. The linear hull V of the union
⋃

S
is i σ(E,F )−dense, so the only linear form vanishing in all A ∈ S is f = 0. By the
separation proof (11) there exists only one y ∈ F such that f(x) = 〈y, x〉 = 0 for all
x ∈ E, and that particular y is evidently 0. So if y ∈ F such, that PA(y) = 0 for all
A ∈ S, then y = 0, so Eσ(E,F ) is Hausdorff. �

Theorem 7.39. The S-topology does not change, if the sets in S are replaced in
the following ways:

a) Add subsets of sets in S.
b) Add finite unions of sets in S.
c) Add sets λA, A ∈ S, λ ∈ K.
d) Add balanced hulls of sets in S.
e) Add σ(E,F )− closures of sets in S.
f) Add bipolars of sets in S.

Proof. .

a) B ⊂ A ∈ S =⇒ A◦ ⊂ B◦ =⇒ A ∈ US.
b) A,B ∈ S =⇒ (A ∪B)◦ = A◦ ∩B◦ ∈ US

c) Kun λ 6= 0, then (λA)◦ = 1
λ
A◦ ∈ UStai. Kun λ = 0, then (λA)◦ = {0}◦ =

F ∈ US.
d) (balA)◦ = A◦ ∈ S.
e) (Āσ)◦ = A◦ ∈ S, since by the bipolar theorem ?? A ⊂ Āσ ⊂ A◦◦, so
A◦ = A◦◦◦ ⊂ (Āσ)◦ ⊂ A◦.

f) Bipolars are by the bipolar theorem the same thing as weakly closed, ba-
lanceds, convex hulls.

�

Theorem 7.40. In every locally convex Hausdorff-space E the topology τ is an S–
topology, where S = {A ⊂ E∗

∣∣ A is equicontinuous }.
Proof. By definition 4.23 mukaan A ⊂ E∗, is equicontinuous, if

∀U ∈ UK ∃V ∈ Uτ such, that f(V ) ⊂ U for all f ∈ A.

Ccoosing U = {λ ∈ K
∣∣ |λ| ≤ 1} huomaa, that A ⊂ E∗, is exactly then equicon-

tinuous, when A ⊂ U◦ for some U ∈ Uτ . Every equicontinuous set A ⊂ E∗ is by
Alaoglu-Bourbaki weakly compact, so weakly bounded, so at least the S− topology
exists.
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Take a neighbourhood basis K for the original topology τ in E, consisting of
barrels. By the bipolar theorem ?? and the theorem by which the barrels are the same
in all compatible topologies, T = T ◦◦ for all T ∈ K. Since T ∈ Uτ , we see that T ◦ ⊂
E∗ is equicontinuous. So we have proven, that T is the polar of some equicontinuous
set and therefore a neighbourhood of the origin in the S−topology. The original
topology is therefore coarser than the S− topology. The reverse implication goes
easily: Let A ∈ S, so it is equicontinuous. This means A ⊂ U circ for some U ∈ Uτ .
We can take U to be a barrel,and use the bipolar theorem to find out that a U = U◦◦

and therefore A◦ ⊃ U◦◦ = U ∈ Uτ . So the S−topology is coarser than the original
topology. �

Remark 7.41 (Remember: 7.20). Let (E,F ) be a separable duality . Then in the
wea topology σ(E,F ) a set A ⊂ E is bounded exactly when it is totally bounded.

Theorem 7.42. Mackeyn and Arensin theorem18 Let (E,F ) be a separable
duality and τ ja locally convex topology in E. Necessary and sufficient for t E∗τ = F
(ie τ compatible with (E,F )) is, that τ is an S- topology, where S can be taken
such, that the following 2 conditions hold:

(i)
⋃

S = E
(ii) Every A ∈ S is balanced, convex and σ(F,E)-compact.

Proof. Later— not really bad . �

Definition 7.43. Let (E,F ) be a duality, which separates F . The Mackey topology
τ(E,F ) is the S−topology in the space E (this way!) where S = {A ⊂ F

∣∣ A is
balanced, convex and σ(E,F )-compact}.

A locally convex space E, with the Mackey topology of the duality (E.E∗) is called
a Mackey space.

Theorem 7.44. Let (E,F ) be a dual pair separating F . The Mackey topology is the
finest topology compatible with the duality (E,F ).

Proof. Corollary of Mackeys and Arens’s theorem (HOW???) �

Theorem 7.45. A locally convex space E is a barreled space exactly when its to-
pology coincides with the strong topology of the duality dualiteetin (E,E∗) (ie with
b(E, f)).

Theorem 7.46. Every barreled space is a Mackey space. (So is every bornological
space.)

Corollary 7.47. Since every metrisable locally convex space is bornological, every
metrisable locally convex space is a Mackey space.

PART II Distributions

1. The idea of distributions

1.1. Schwartz test functions and distributions.

18Richard Friederich Arens 24 April 1919 – 3 May 2000 Saksa → USA.
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Remark 1.1. Distributions make ist possible to define a derivative for almost any
function - but the derivative will not be a function, it is a measure and higher
derivatives are —- distributions!. The theory works fine in any dimension or even
Banach spaces, but we do it in R1 for clarity. There is no real difference to the
general case.

Integrals are Lebesgue
Let us begin by a heuristic description of what we want.

Example 1.2. Let f : R → R be a locally inegrable function, ie we assume, that
the integral

∫
K
f exists always, when K ⊂ R is compact. Notice that f defines for

each ” test function” ϕ a number

〈ϕ, f〉 :=

∫
fϕ

and the mapping

ϕ 7→ 〈ϕ, f〉 :=

∫
fϕ

is linear and continuous wrt ϕ. The function f can be identified withthis mapping,
if we have enough test functions to have different values for at least some 〈f, ϕ〉 if
f aris altered in a positive measure set. This is true for instance in the case, when
all infinitely differentiable functions with compact support are taken into the set of
test functions.

If f is infinitely differentiable, then∫
f ′ϕ = −

∫
fϕ′,

where the other summand is left out, since the product function has compact sup-
port. This gives a reason to define the derivative of a distribution

f : ϕ 7→ 〈ϕ, f〉 :=

∫
fϕ

to be the ”distributioni”

f ′ : ϕ 7→ 〈ϕ, f ′〉 := −
∫
fϕ′.

One could be tempted to to define general distributions by repeating this proce-
dure. This is not the fulltruth. Also,one has to be careful withthe choice of the space
of test functions and its topology – these is room for alternatives. In particular it
would be nice to define the topology such that differentiation becomes a continuous
linear operator – something not comon in usual topological function spaces.

2. Schwartz’s test function space

19

19Laurent-Möıse Schwartz 1915–2002, France. Book Théorie des Distributions 1950-1951.
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2.1. The spaces C∞(Ω) and DK.

Definition 2.1. Denot differentiationby D, so the k:th derivative of a function
ϕ : R→ R is Dkϕ = ϕ(k).20

The ϕ support supp(ϕ) of a function ϕ is the closure of the set {x
∣∣ ϕ(x) 6= 0}.

In the following we always have Ω ⊂ R open and K ⊂ Ω compact. Define

C∞(Ω) := {ϕ : Ω→ R
∣∣ ∀ k : ∃Dkϕ}

DK := {ϕ ∈ C∞(Ω)
∣∣ supp(ϕ) ⊂ K}.

Equip C∞(Ω) with its metric standard topology also called compact C∞−convergence.
The space DK i such that en its linearand topological subspace.

Definition 2.2. Let K1, K2 . . . be compact sets such, that

K1 ⊂ intK2, K2 ⊂ intK3, · · · ⊂ Ω, and

Ω =
⋃
i∈N

Ki,

for example 21

Kn
n-n

Ki := {x ∈ Ω
∣∣ ‖x‖ ≤ i and d(x, ∂Ω) ≤ 1

i
}.

The seminorms — they are in fact norms —

pi(ϕ) := sup{ |Dkϕ(x)|
∣∣ k ≤ i, x ∈ Ki} i ∈ N

define in C∞(Ω) a locally convexn topology, which is independent of the choice of the
sequence K1, K2, . . . . We call it the topology of compact C∞–convergence topology
i, since ϕn → ϕ means, that ϕn(x) → ϕ(x) with all derivatives uniformly in any
compact set K ⊂ Ω.22

Remark 2.3. The topology of compact C∞–convergence in the spaces C∞(Ω) and
DK has the following properties:

(1) C∞(Ω) and DK are metrizable.
(2) The Evaluation functionals ϕ 7→ ϕ(x) are continuous. (x ∈ Ω or K)

20Here k isa natural number. Multi-indices k tare needed for higher dimensions.
21The drawing is 2- dimensional and not 1–dimensional - hope to make clear the general case.

Rn.
22By definitionin the Ki, but really in all compact K ⊂ Ω, since all these have positive distance

from the boundary of Ω.
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(3) DK is a closed subspace of C∞(Ω).
(4) C∞(Ω) is complete, so it si a Fréchet–space.
(5) The subspace DK ⊂ C∞(Ω) is closed. So also every DK is a Fréchet–space.

Proof. Metrizability is evident since there are denumerably many defining semi-
norms. Continuity of the evaluation functionals is clear by 6.2.4.

DK =
⋂
x/∈K

Ker (ϕ 7→ ϕ(x))

is a closed subspace, since it is an intersection of closed hyperplanes.
To prove completeness of the spaces C∞(Ω) ttake a Cauchy-sequence (ϕn)n∈N.

Let i ∈ N. in the sense of the seminorm pi the sequence (ϕn)n∈N is Cauchy, so in
particular the sequence by assumption converges uniformly in the compact set Ki.
The same applies to its derivatives up to degree i. By a teheorem from alalysis, the
liit function g is differentiabne equally many times and Dkϕn → Dkg uniformly in
compact sets . By definition, this happens C∞- in every x ∈ Ω neighbourhood and
all degrees. That is what we wanted .

Remark 2.4. The seminorms pj are norms in DKi , i ≤ j, and the sequence (pj)j∈N
is even increasing, but the spaces DKi are not normed spaces. This can be seen by
noticing that they are infinite dimensional but nevertheless have the Heine-Borel
property, 23 stating that every closed set is contained in some compact set.

Proof. Exercise 8

2.2. Schwartz’s test function space D(Ω).

Definition 2.5.

D(Ω) = {ϕ ∈ C∞(Ω)
∣∣ supp(ϕ) on compact ⊂ Ω} =

∞⋃
i=1

DKi .

Remark 2.6. D(Ω) ⊂ C∞(Ω). For compactly supported functions, the standard
norms24

pi(ϕ) := sup{ |Dkϕ(x)|
∣∣ k ≤ i, x ∈ Ki} i ∈ N

of
C∞(Ω) can be replaced by the norms

‖ϕ‖i := max{|Dkϕ(x)|
∣∣ k ≤ i, x ∈ Ω }

and these define the C∞−convergence topology C∞(Ω), which is metrisable and
induces into the subspaces DK the topology used already above. One is tempted
to use the same topology for test functions as well, but there is a drawback: the
topology of C∞− does not make the space D(Ω) complete — not even sequentially. A
countrexaple is easily found: : Take Ω = R. There exists a C∞–function ϕ : R→ [0, 1],
which takes on [1

4
, 3

4
] the value 1 and outside [0, 1] the value 0. The sequence (ϕn)n∈N:

turns out to be Cauchy but not convergent.

23Use Ascolin (Giulio Ascoli 1843–1896, Italia) theorem — Exercise set 8 .
24In particular the uniform convergence - ”sup”norm‖ · ‖o .
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-1 1 2 3 4 5 6 7 8

6

ϕn(x) = ϕ(x− 1) +
1

2
ϕ(x− 2) + · · ·+ 1

n
ϕ(x− n).

This gives reason to modify the topology.

Definition 2.7. The standard topology of the test function space D(Ω) y τ is defined
like this:

(1) Basic neighbourhoods of the origin in τ are all such balanced, convex sets
A ⊂ D(Ω), for which A∩DK is a neighbourhood of the origin in DK :ssa for
for all compact K ⊂ Ω.

(2) Translation — of course — gives neighbourhoods of other points.

A ∈ Ux ⇐⇒ A− x ∈ U0.

Remark 2.8. We use this topology when not stated otherwise.

Remark 2.9. The topology is locally convex. It also has the following properties:

Theorem 2.10. (1) A balanced, convex set A ⊂ D(Ω) is open if and ony if
A ∩ DK is open for all compact K ⊂ Ω.

(2) τ induces to each DK their original topology.
(3) A set R ⊂ D(Ω) is bounded if and only if it is contained in some DK and i

such that ere bounded.
(4) Every bounded, closed set in the space D(Ω) is compact. so it has the Heine–

Borel–property.
(5) A sequence of test functions (ϕi)i∈N is Cauchy if and only if it it is contained

in some DK and i such that ere Cauchy.
(6) A sequence of test functions (ϕi)i∈N converges to a test function ψ if and only

if it it is contained in some DK and converge such that ere. kohti functionta
ψ.

(7) D(Ω) is sequentially complete.
(8) D(Ω) is complete.
(9) D(Ω) not metrizable.

(10) A linear mapping T from D(Ω) to any locally convex E – in particular any
linear form – is continuous if and only if its restrictions to the spaces DK
are continuous.

(11) In particular the derivation opertor D is continuous in D(Ω).

Proof. We will prove two general theorems implying all these statements. 2.11
and 2.12 implying all these statements.
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On the other hand, most of these (full completeness is complicated) are not too
difficult to prove directly – in this order. The FINNISH text below gives arguments
for (3), (8) and (9). I have deleted them here, since there come theoretical ones later
on.

2.3. D(Ω) as a direct inductive limit.

Remark 2.11. In fact D(Ω) is the direct inductive limit of the spaces DK . Remem-
ber 5.16: Let {Ti : Fi → Ei

∣∣ i ∈ I} be a family of linear mappings froma some
locally convex spaces to a vector space E. The mappings Ti (i ∈ I) create a local-
ly convex topology, called thelocally convex inductive limit topology in E which is
the finest locally convex topology, where every Ti is continuous . Its neighbourhood
basis of the origin can be taken to be

BE = {U ⊂ E
∣∣ U is bal, konv, and abs and T−1

I (U) ∈ UEi ∀ i ∈ I}.

A locally convex ind limit has the following properties t:

(i) Any lineaar mapping T from E to any locally convex n vector space E is
continuous if and only if every T ◦Ti is continuous . In particular this applies
to linear forms E → K.

(ii) In the space E, a seminorm p is continuous if and only if every p ◦ Ti is (a)
continuous (seminorm).

(iii) The inductive limit of barreled spaces is a barreled space.
(iv) The inductive limit of bornological spaces is a bornological space. (Defini-

tion: A space is bornological, if every convex, balanced set, which absorbs all
boundd sets, is a neighbourhood of the origin.)

A special case is the direct inductive limit ( English name still to be checked
XXX) Let E1 ( E2 ( . . . be a secuence of closed subspaces, all locally convex
and Hausdorff. Their union E =

⋃
NEn with the inductive limit topology of the

inclusions in : Ei → E is called the direct inductive limit of the spaces, and denoted
lim
−→
En.

Theorem 2.12. The direct inductive limit E = lim
−→
En ihas the following properties

(i) In E a seminorm p is continuous if and only if its restriction to each En is
continuous.

(ii) A linear mapping from E to any locally convex F (in particular linear form
) T is continuous, if and only if its restriction to each En is continuous

(iii) The original topology τn of each En is induced by the topology τ in E = lim
−→
En

topologyn τ indusoima subspacetopology τ .
(iv) En is a closed subspace of E.
(v) E is Hausdorff.
(vi) subset A ⊂ E is bounded exactly whenit is ja bounded subset of some En.
(vii) A sequence (xn) ⊂ E is convergent (or Cauchy) exactly when it is convergent

(or Cauchy) in some n En so E is sequentially complete exactly when each
En is sequentially complete.

(viii) E is complete exactly when each En is complete.
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(ix) No En ⊂ E has interior points. So if every En is complete, then E cannot
be metrizable.

(x) If every En is a barreled space, then E is barreled space.
(xi) If every En is a bornological space, then E is bornological space.
(xii) If in En every bounded closed set is compact, then in E every bounded closed

set is compact. (Cf. warning ??)

Proof.

(i) The restriction of a seminorm p in E to En is p ◦ in. Since Ecarries the
induktiivinen locally convex topology of the injections im, then by ?? p is
continuous in E, if and only if every such mapping is continuous .

(ii) The restriction of a linear mapping T : E → F r to En is T ◦ in. Since
Ecarries the induktiivinen locally convex topology of the injections im, then
by T is continuous in E if and only if every such mapping is continuous .

(iii) To prove, that the original topology τn of En: is the same as the subspace
topology τ induced by the direct ind limit E = lim

−→
En we have to check that

both have the same continuous seminorms:
Let p be a seminorm of En, continuous in τ . It has (by an older exercise)

a continuation to become a continuous semnorm in E. This continuation to
E has restrictions, that are continuous in the En in their original topologies.
So p is continuous in the original topology τn.

On the other hand, if we assume, that p is a τn-continuous seminorm,
then it can be extended to become a continuous seminorm in En+1, since
En ⊂ En+1 is a topological and linear subspace. Repeating this, we construct
a semnorm p in E. Its restricitions are the ones just constructed, so they are
τn–continuous. Therefore p is τ -continuous, and so are its restrictions, among
themth eoriginal one.

(iv) Prove, that En is a closed subspace of E. Let x0 ∈ E \ En. Then for some
m we have x0 ∈ Em \ En, so, since En is by assumption closed in Em+1 and
therefore by induction in later Em, there exists a continuous seminorm in Em
such, that x0 + Bp ∩ En = ∅. We just noticed that p van be extended to a
continuous seminorm p in E. This has the property x0 +Bp ∩En = ∅, so x0

is an interior point of the set E \ En.
(v) Prove, that E is Hausdorff. Let x ∈ E. There exists x ∈ En for some n, and

En is by assumption Hausdorff, so there exists a continuous seminorm in E,
for which p(x) 6= 0. This - –continued to all of E has at x a nonzero value.

(vi) Since any continuous linear mapping maps bounded sets to bounded sets,
every bounded set in some En is bounded set also a a subset of E . Let us
prove the converse: Let A ⊂ E be bounded. If A is not in cluded in any
En, then choose strictly increasing sequence of numbers (nk) and vectors
xnk ∈ (Enk+1

\Enk) ∩A. Then construct continuous seminorms pk : Ek → R
such, that they are restrictions of each other and are such that 1

k
xk lies

outside the open unit ball of pnk (Exercise or lemma 2.15) Since nk is strictly
increasing, then E =

⋃
k∈NEnk . As before, construct a continuous seminorm

p in E, whose restrictions to the Enk are the seminorms pnk . Its open unit
ball is a neighbourhood of the origin in the space E. Since xk ∈ Enk+1

, then
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evidently also 1
k
xk ∈ Enk+1

. But 1
k
xk lies outside the open unit ball of pnk+1

,

so pnk+1
( 1
k
xk) ≥ 1. In other words p( 1

k
xk) ≥ 1 for all k ∈ N∗. So ( 1

k
xk) does

not converge to 0. But since (xk) ⊂ A is bounded, then easily ( 1
k
xk) → 0 .

This contradiction proves the statement.
(vii) A sequence (xn) ⊂ E is convergent (or Cauchy) exactly when it is convergent

(or Cauchy) in some n En. This is evident, since such sequences are bounded,
hence inside some En, and the En are topological subspaces of E.

(viii) Completeness is tricky. Make it a theorem 2.18
(ix) Every En ( E is a subspace, so it has no interior points. E is the denumerable

union of the subspaces En, so it is Baire 1. category. If every En is complete,
then E is complete and Bairen 1. category, so by Baire’s theorem ?? not
metrizable.

(x) If every En ⊂ E is a barreled space, then E is barreled by 5.16
(xi) If every En ⊂ E is bornological space, then E is bornological by 5.16
(xii) Let for each En every bounded closed set be compact. Let A ⊂ E be bounded

and closed. We rove, that A is compact: Since A is bounded, then it is
contained in some En and is bounded and closed there, so it is compact.

Definition 2.13. An barreled space where every closed, bounded set is compact, is
called a Montel space.

Remark 2.14. By what we just proved 2.12, a direct inductive limit of Montel
spaces is Montel.

Theorem 2.15 (Lemma). Here I omitted the Finnish construction of the
sequences above – not very illuminating.

Definition 2.16. a) A direct inductive limit of Banach spaces is called an LB−space.
b) A direct inductive limit ofFréchet spaces is called an LF−space.

Remark 2.17. In particular every LB−space is a LF−space. Every LF−space is
l by 2.12 bornological. So it is a complete Montel-space, but never metrisable.

Theorem 2.18. (Köthe’s theorem)A direct inductive limit of complete spaces is
is complete.

Proof. Let F be a Cauchy filter in the space E. The family of sets

G0 = F + U0 = {M + V
∣∣M ∈ F , V ∈ U0}

is a filter basis in the space E. It spans a filter call it G ⊂ F . This is aCauchy- filter:
Let U ∈ UE. Choose a balanced V ∈ UE, such that V + V + V ⊂ U . Since F is a
Cauchy filter, there exists M ∈ F such that M −M ⊂ V . Now

(M + V )− (M + V ) = (M −M) + (V − V ) ⊂ V + V + V ⊂ U.

Prove next, that the trace of the filter G in some subspace En is a filter. We have to
verify, that some En intersects each A ∈ G. Antitheesis: no En intersects each A ∈ G,
but for all n ∈ N there exists an An ∈ G. not intersecting En. In particular
there exists a filter basis set of this kind: ∀n ∈ N∃Mn ∈ F and a barrel Vn ∈ UE
such, that (Mn+Vn)∩En = ∅, and we evidently can arrange V0 ⊃ V1 ⊃ V2 . . . . Next
we ”make Vn independent of n”,
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Let Y = co(
⋃
n∈N(Vn∩En)). Now Y ∈ UE, since Y is convex, balanced and absor-

bing and for all n is Y ∩ En ∈ UEn , which mean such that at Y is a neighbourhood
of the origin in the direct inductive limit topology.

• We prove that for all n on (Mn +Y )∩En = ∅. Another antithesis: (We have
not finished the previous indirect proof yet): ∃n ∈ N : (Mn + Y ) ∩ En = ∅
so there exists y ∈ (Mn + Y ) ∩En. This mean such that at for some n there
exists y ∈ En such that

y = zn +
r∑

k=1

λkxk,

where

zn ∈Mn,(2.1)

xk ∈ Ek ∩ Vk(2.2)

λk ≥ 0 ja
∑r

k=1 λk = 1.(2.3)

If r ≤ n, niin summassa
∑r

k=1 λkxk jokainen xk kuuluu avaruuteen En, on-
han Ek ⊂ En kaikilla k ≤ n. Tällöin

∑r
k=1 λkxk ∈ En, joten, koska tietenkin

Mn ⊂Mn + Vn,

z = y −
r∑

k=1

λkxk ∈ En ∩Mn ⊂ En ∩ (Mn + Vn) = ∅,

ja ristiriita on saatu.
If r > n, we divide the sum

∑r
k=1 λkxk in two parts:

r∑
k=1

λkxk =
n∑
k=1

λkxk +
r∑

k=n+1

λkxk

The first part belongs to En, since xk ∈ Ek ⊂ En for k ≤ n. In the second
sum again xk ∈ Vk ⊂ Vn, since V1 ⊃ V2 ⊃ . . . . because the coefficients λk
are positive and sum up at most to 1 the second sum belongs to the convex
set Vn. So

y −
n∑
k=1

λkxk = zn +
r∑

k=n+1

λkxk ∈ (Mn + Vn) ∩ En = ∅.

This contradiction proves, that for all n ∈ N we have (Mn + Y ) ∩ En = ∅.

By assumption, F is a Cauchy filter. Since Y ∈ UE there exists M ∈ F such that
M−M ⊂ Y . Let x ∈M . Since x ∈ E =

⋂
n∈NEn, there exists n ∈ N, such that

x ∈ En. So x ∈ En ∩M . Since M and Mn belong to the filter F , their intersection
M ∩Mn 6= ∅ so we can choose an y′ ∈M ∩Mn. Now

x = y′ + (x− y′) ∈ y′ + (M −M) ⊂ y′ + Y ⊂Mn + Y.

But x ∈ En. Siis x ∈ En ∩ (Mn + Y ) = ∅, whichis impossible. This contradiction
proves, that Gn is a filter in the space En. It also is Cauchy: If Un ∈ UEn , then there
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exists U ∈ UE such that Un = U ∩ En, and since G is Cauchy, there exists A ∈ G
such, that A− A ⊂ U ,so (A ∩ En)− (A ∩ En) ⊂ U ∩ En = Un.

Since we assumed, that En is complete Gn converges to someä x0 ∈ En. So every
neighbourhood of x0 has a subset belonging to G .

Prove i, that F → x0. Since G ⊂ F , it is sufficient to prove, that G → x0. Let
U ∈ UE. Try to find A ∈ G such that A ⊂ x0 + U . Take a balanced V ⊂ UE such
that V + V ⊂ U and A ∈ G such that A − A ⊂ V . Since Gn → x0, there exists
B ∈ G such that B ∩ En ⊂ x0 + (V ∩ En). Now A ∩ B ∈ G, so A ∩ B ∩ En 6= ∅
and so also A ∩ (x0 + V ) 6= ∅. Let x ∈ A and y ∈ A ∩ (x0 + V ). Now x − x0 =
x− y + y − x0 ∈ A− A+ V ⊂ V + V ⊂ U . So A ⊂ x0 + U , so G → x0. �

2.4. Continuity of linear mappings in the test function space D(Ω).

Remark 2.19. Any continuous linear mapping T : E → F maps bounded sets to
bounded sets. In particular sequences converging to the origin are mapped to boun-
ded sets. If E is metrizable and locally convex, then this criterion is also sufficient
for continuity. 25

Proof. If E is metrizable, then any sequentially continuous mapping from E to a
topological space is continuous. For a linear mapping this has to be checked at the
origin only. So consider a sequence xn → 0 in a metrizable a locally convex space E.
There exists a sequence of numbers cn > 0 such, that

cn →∞ and(2.4)

cnxn → 0.(2.5)

One can take

cn :=

{
1√

d(xn,0)
, kun xn 6= 0

n, kun xn = 0,

where d is the metric

d(x, y) =
∞∑
k=1

1

2k
pk(x− y)

1 + pk(x− y)
.

To see this, notice that cn →∞, so for large n we have cn > 1 and therefore also

d(cnxn, 0) =
∑∞

k=1
1
2k

pk(cnxn)
1+pk(cnxn)

(2.6)

= cn
∑∞

k=1
1
2k

pk(xn)
1+cnpk(xn)

(2.7)

≤ cnd(xn, 0) ≤
√
d(xn, 0)→ 0.(2.8)

By our assumption T maps cnxn to a bounded seqquence

cnTxn ⊂ F.

finally, it is easy to check that the product of a bounded sequence and a sequence
converging to 0 converges to 0. �

Corollary 2.20. A linear mapping T : D(Ω) → E, where E is a locally convex
space, is continuous if and only if it satisfies the equivalent conditions:

25Actually this holds without assuming local convexity.
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a) T is bounded : R
bounded
⊂ D(Ω) =⇒ T (R)

bounded
⊂ E.

b) ϕi → 0 =⇒ {Tϕi
∣∣ i ∈ N} is bounded .

c) T is sequentially continuous at the origin : ϕi → 0 =⇒ Tϕi → 0.

Proof. Let T : D(Ω)→ E be bounded. In particular bounded sets in a subspace
DK are mapped to bounded sets, so byy the previous remark, tha mapping is conti-
nuous in the (metrizable) subspace and so it is by 2.19 continuous in every DK and
by ?? also in the whole space D(Ω) = lim

−→
D(K).

Similarly (b)or (c) gives continuity in the subspaces DK . �

3. Distributions and measures

3.1. Distributions and their degrees.

Definition 3.1. Distributions are elements of the space

D∗ = D(Ω)∗,

the topological dual of their test function space D(Ω).

Remark 3.2. D(Ω) carries the inductive limit τ– topology. Therefore, among other
things, a linear form

Λ : D(Ω)→ R
is a distribution if and only if for each compact K ⊂ Ω there exist numbers C > 0
and n ∈ N such, that for all ϕ ∈ DK :

(3.1) |〈ϕ,Λ〉| ≤ C‖ϕ‖n.

the norm ‖ϕ‖n is what we defined above at 2.6.

Definition 3.3. The distribution Λ has finite degree, if 3.1 for all K with the same
n. The smallest such n called the degree . of Λ.

Example 3.4. (a) Evaluation functionals t also called Dirac δ–measures

〈ϕ, δx〉 := ϕ(x), x ∈ Ω,

are distributions of degree 0.
(b) Let f : Ω→ Rbe locally integrable, so for all compact K ⊂ Ω∫

K

|f | <∞.

Now f defines a degree 0 distribution Λf by

〈ϕ,Λf〉 :=

∫
Ω

fϕ,

since

|〈ϕ,Λf〉| ≤ ‖ϕ‖0

∫
K

|f | ∀ϕ ∈ DK .

One can identify Λf with the function f (almost everywhere!) .
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(c) Similarly, every (Radon ?) measureµ on Ω,for which 0 ≤ µ(K) < ∞ for
compact K ⊂ Ω, defines and is identidied with the zero degree distribution Λµ:

〈ϕ,Λµ〉 :=

∫
Ω

f dµ.

By derivation, one can create higher degree distributions

3.2. Derivatives of distributions.

Definition 3.5. Let Λ ∈ D∗. Its derivative is the distribution DΛ := −Λ ◦D , ie.

〈ϕ,DΛ〉 := −〈Λ, Dϕ〉 ∀ϕ ∈ D(Ω).

This linear form is continuous in the test function space, since differntiation D is
a continuous operator in the test function space D(Ω) → D(Ω). We can also verify
directly:

If |〈ϕ,Λ〉| ≤ C‖ϕ‖n ∀ϕ ∈ DK ,
niin |〈ϕ,DΛ〉| ≤ C‖Dϕ‖n ≤ C‖ϕ‖n+1 ∀ϕ ∈ DK ,

and find out that differentiation rises the degree by at most one. By calculating the
derivative of the Dirac deltan one finds an example where the degree is changed.

Higher derivatives are defined by repeating this procedure, so a distribution has
all derivatives.

Remark 3.6. There is a slight problem in the definition above. If Λ corresponds
to a function a.e. there are 2 derivatives, the usual one and the one derined above.
They might indeed be different: An example is given by the step function f(x) =
0, for x < 0, f(x) = 1 elsewhere. Its derivative is ae. 0, but its distribution derivative
is the Dirac δ0. But this is not very harmful:

Theorem 3.7. Lause 8.6 If Df is continuous in Ω, then

DΛf = ΛDf .

Proof. Partial integration / exercise. �

More examples of ditstributions can be constructed by multiplying distributions
and functions:

3.3. Products of distributions and functions.

Example 3.8. Let Λ ∈ D∗ and g ∈ C∞. The product gΛ is the distribution

〈ϕ, gΛ〉 := 〈gϕ,Λ〉

Motivation: Two things have to be verified: There should be no contradiction with
the usual definition,if Λ = Λf is a function in the sense of 3.4 (b). This is true —
and motivates our definition: ∫

Ω

(fg)ϕ =

∫
Ω

f(gϕ).
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The other thing to be verified i such that at fΛ is really a distribution. Evidently it
is a linear mapping, so only continuity remains to be checked. Use 3.2. Let K ⊂ Ω
be compact.

Assume: ∃C, n : |〈ϕ,Λ〉| ≤ C‖ϕ‖n ∀ϕ ∈ D(Ω).

Claim: ∃C ′, n′ : |〈gϕ,Λ〉| ≤ C ′‖ϕ‖n′ ∀ϕ ∈ D(Ω).

Calculate: |〈gϕ,Λ〉| ≤ C‖gϕ‖n = C max
{
|Dk(gϕ)|

∣∣ k ≤ n, x ∈ Ω
}

≤ C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)(Dk−jϕ)
∣∣ ∣∣∣ . . .}

≤ C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)
∣∣ ∣∣∣ . . .}max

{
|Dk−jϕ|

∣∣ . . .}
= C ′‖ϕ‖n,

where

C ′ := C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)
∣∣ ∣∣∣ k ≤ n, x ∈ Ω

}
�

The crucial phase in the proof was Leibnitz’s formula for higher derivatives —
containing the binomial coefficients.

Remark 3.9. By calculation, one can verify Leibnitz’s formula for derivatives of
distributions as well. There are higher dimensional versions also.

3.4. Topology in the space of distributions.

Definition 3.10. D∗(Ω) is the topological dual of the test function space, so we can
intriduce polar topologies, in particular the weak topology w∗ := σ(D∗(Ω),D(Ω)).
This is almost always used, so convergence of a sequence of distributions means:

Λn → Λ ⇐⇒ 〈ϕ,Λn〉 → 〈ϕ,Λ〉 ∀ϕ ∈ D(Ω).

Being the transpose of a continuous linear mapping, derivation is continuous in
the w∗–topologies.

Theorem 3.11. Let Λi ∈ D(Ω)∗ be a sequence of distributions such that

〈ϕ,Λn〉 → 〈ϕ,Λ〉 ∀ϕ ∈ D(Ω).(3.2)

equivalently Λn → Λ The derived sequence converges in the same topology:

〈ϕ,DΛn〉 → 〈ϕ,DΛ〉 ∀ϕ ∈ D(Ω).

Proof. Immediate from ??. �
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3.5. Radon-measures are distributions.

Example 3.12 (General Radon measures). WhenX is a locally compact Hausdorff-
space — for example an open set X ⊂ Rn — we write C = (X) = {f : X → K

∣∣ f
is continuous} and Cc(X) = {f ∈ C(X)

∣∣ f is compactly supported}. For copact
K ⊂ X we write CK(X) = {f ∈ C(X) : supp f ⊂ K}. The sup-norm makes Cc(X) a
Banach-space and CK(X) its closed subspaces.

Since Cc(X) =
⋃
K
komp
⊂ X

CK(X), we can equip Cc(X) with the locally convex limit

topology τ wrt. the inclusion mappings CK(X)→ Cc(X). We denote it by Cc(X)τ .
A Radon measure is a continuous linear form Cc(X)τ → K ie. an element of the

topolgical dual Cc(X)τ
∗. If also µ(f) ≥ 0 for all positive f ∈ Cc(X), then µ is a

positive Radon–measure .
A linear form µ ∈ Cc(X)′ is by ?? a Radon–measure exactly if it is continuous in

the sup-norm in every subspace CK(X) equivalently:

∀K
komp
⊂ X ∃λK > 0 such that |〈f, µ〉| ≤ λK‖f‖∞∀ f ∈ CK(X).

Definition 3.13. If a topological space X is a union of countably many sets X =⋃
n∈NKi, then we say, that the sequence (Kn)n∈N is a tyhjennys of X by compact

sets, if

(i) K1 ⊂ K2 ⊂ . . . , and
(ii) for every compact set K ⊂ X there exists n ∈ N such that K ⊂ Kn.

For example for every open set X ⊂ Rn there exists tyhjennys by a sequence of
compact seie. ??

Example 3.14 (Radon measures and tyhjennys). If (Kn)n∈N is a tyhjennys of
a locally compact space X by a sequence of compact sets, then Cc(X)τ is the direct
inductive limit lim

−→
CKn(X).

Proof. Every compact set K ⊂ X is included in some Kn, so the Banach-space
CK(X) is a closed topological and linear subspace of CKn(X). So the locally convex
inductive topology τ of Cc(X) coincides with the direct inductive limit topology
in lim
−→
CKn . So the linear form µ ∈ Cc(X)′ is a Radon–measure exactly, when it is

sup-norm-continuous in each CKn(X) ie.

∀n ∈ N ∃λn > 0 such that |〈ϕ, µ〉| ≤ λn‖ϕ‖∞∀ϕ ∈ CKn(X).

BNouded sets in Cc(X)τ always are included in some CKn(X) and are bounded
there,

A = {ϕ ∈ Cc(X)
∣∣ ∃n ∈ N such that suppϕ ⊂ Kn and ‖ϕ‖∞ ≤ n}.

Example 3.15. (Lebesgue measure) Let Ω ⊂ Rn be open. The mapping Cc(Ω)→
K: ϕ 7→

∫
Ω
ϕ is a positive positive Radon measure, called the Lebesgue measure m.

Proof. For all ϕ ∈ CKn(Ω) is

|〈ϕ,m〉| =
∣∣ ∫

Ω

ϕ
∣∣ =

∫
Kn

ϕ ≤ ‖ϕ‖∞
∫
Kn

1.
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Remark 3.16. Some measure theory
a) In an open set X = Ω ⊂ Rn a positive linear form µ ∈ Cc(Ω)′ is always

continuous, so a Radon-measure .

Proof. We prove, that a positive linear form µ is continuous in every space CK(Ω).
Take a continuous non-negative compactly supported function ψ ∈ Cc(Ω) such that
ψ(x) = 1 for all x ∈ K. (Sellainen exists!) For all ϕ ∈ CK(Ω) by positivity of µ:n

|〈ϕ, µ〉| ≤ 〈|ϕ|, µ〉 = 〈|ϕ|ψ, µ〉
≤ 〈sup

x∈K
|ϕ(x)|ψ, µ〉

= 〈ψ, µ〉 sup
x∈K
|ϕ(x)|.

b)Remember Rieszrepresentation theorem, by which every Radon-measure µ ∈
Cc(Ω)∗ can be represented as

〈ϕ, µ〉 =

∫
Ω

ϕdµ̄,

where µ̄ is a regular Borel-measure 26 in Ω.

Example 3.17. (Functions as Radon–measures) Let Ω ⊂ Rn be open and
f : Ω → K locally integrable ie. for each compact set K ⊂ Ω is

∣∣ ∫
K
f
∣∣ < ∞. Then

ϕ 7→
∫

Ω
ϕf ia a Radon measure called Lebesgue measure with density f . The measure

corresponding to f is positive if and only if f ≥ 0 ae.

Perustelu. for all ϕ ∈ CKn(Ω) we haave

|〈ϕ, f〉| =
∣∣ ∫

Ω

ϕf
∣∣ =

∫
Kn

ϕf ≤ ‖ϕ‖∞
∣∣ ∫

Kn

f
∣∣.

Example 3.18. (Dirac δ Radon–measure ) Let Ω ⊂ Rn be open and x ∈ Ω.
The evaluation functional δx : Cc(Ω) → K : δx(ϕ) = ϕ(x) isalso called the Dirac
δ-measure at x. It It is a positive Radon–measure .

Remark 3.19. The linear form f : D(Ω) → K is by 2.20 continuous, so a distri-
bution, exactly when it is sequentially continuous, And that happens, if and only if
the following condition is true:

If (ϕk)k∈N is a sequence in D(Ω) and there exists acompact K ⊂ Ω such that
suppϕn ⊂ K for all n and for all k ∈ N

Dkϕk(x)→ 0 uniformly in K,

then f(ϕk)→ 0.

Proof. Exercise

Theorem 3.20. Let Ω ⊂ Rm be open.

a) The restriction of a Radon-measure µ ∈ Cc(ω)τ
∗ to D(Ω) is a distribution.

b) Two distinct Radon-mesures µ ∈ Cc(ω)τ
∗ have distinct restrictions to D(Ω).

26Borel-measure is Borel-set jen σ–algebrassa defined measure . Reguilarity: ∀K
komp
⊂ Ω ∀ε >

0 ∃
open
⊂ Ω siten, such that V̄ is compact, K ⊂ V and ∀W

open
⊂ Ω, for which K ⊂ W ⊂ V , is

|µ(W )− µ(K)| < ε. In a metric space all Borel-measures are regular.
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Proof. (a) follows from the fact that the topology induced by Cc(Ω) to its subspace
D(Ω) is coarser than the strandard topology of D(Ω), since for all n ∈ N we have
DK ⊂ C(K) and the inclusion is continuous.

(b) follows from the fact that D(Ω) is obviously dense in Cc(ω)τ .

Remark 3.21. We can identify Radon-measures with the corresponding distribu-
tions. They obviously have degree 0. 27

3.6. The product of a distribution and a function.

Example 3.22. Let Λ ∈ D(R)∗ ja g ∈ C∞. Then the product gΛ is defined to be
the distribution

〈ϕ, gΛ〉 := 〈gϕ,Λ〉

Conistency. When Λ = Λf is a function, the definition should coincide with the
older one in 3.4 (b). TThis is OK:∫

Ω

(fg)ϕ =

∫
Ω

f(gϕ).

Check that fΛ os a distribution ie continuous: Use 3.2. Let K ⊂ Ω be compact.

Assume: ∃C, n : |〈ϕ,Λ〉| ≤ C‖ϕ‖n ∀ϕ ∈ D(Ω).

Claim: ∃C ′, n′ : |〈gϕ,Λ〉| ≤ C ′‖ϕ‖n′ ∀ϕ ∈ D(Ω).

Calculation: |〈gϕ,Λ〉| ≤ C‖gϕ‖n = C max
{
|Dk(gϕ)|

∣∣ k ≤ n, x ∈ Ω
}

≤ C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)(Dk−jϕ)
∣∣ ∣∣∣ . . .}

≤ C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)
∣∣ ∣∣∣ . . .}max

{
|Dk−jϕ|

∣∣ . . .}
= C ′‖ϕ‖n,

where

C ′ := C max

{
k∑
j=0

(
k

j

) ∣∣(Djg)
∣∣ ∣∣∣ k ≤ n, x ∈ Ω

}
�

Multiplication of a distribution by a function is the transpose of multiplying test
functions by the same function. In fact we just verified the continuity of that ope-
ration.

Remark 3.23. The core formuola above was Leibnitz formula for higher derivatives
of a product.

Remark 3.24. By direct calculation ome can check Leibnitz formula for higher
derivatives of distributions as well.

D(fΛ) = Df Λ + f Dλ.

27Exercise: Are there others?
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There is a version for partial derivatives and derivatives in higher dimensions .

Proof. Exercises. �

4. The support of a distribution

4.1. The support of a distribution.

Definition 4.1. Two distributions Λ1 and Λ2 coincide in an open set ω ⊂ Ω, if

〈ϕ,Λ1〉 = 〈ϕ,Λ2〉 ∀ϕ ∈ D(ω).

In particular Λ = 0 ω, if Λ takes to 0 all test functions whose support is included in
j ω.

Example 4.2. (a) A locally integrable function f vanishes ae. in a set ω, if the
corresponding distribution Λf = 0 vanishes in the set ω.

(b) A Radon–measure gives measure 0 to all Borel sets B ⊂ ω exactly when the
corresponding distribution is 0 in the set ω.

Definition 4.3. The support of a distribution Λ support supp Λ is the closed set

supp(Λ) = Ωr
⋃

Λ=0 ω:ssa

ω = Ωr
⋃
{ω

open
⊂ Ω

∣∣ 〈f,Λ〉 = 0, When supp f ⊂ ω}.

Example 4.4. (i) The support of a distribution Λ is empty if and only if Λ = 0.

(ii) The support of the distribution δ is the set R r
⋃
{ω

open
⊂ R

∣∣ f(0) = 0,
When supp f ⊂ ω} = {0}.

Remark 4.5. Λ = 0 in
⋃
{ω

open
⊂ Ω

∣∣ 〈f,Λ〉 = 0, when supp f ⊂ ω} .

Proof. Exercise. Use partitions of unity.

Theorem 4.6. Let Λ ∈ D(Ω)∗ be a distribution.

a) If ϕ ∈ D(Ω) and suppϕ ∪ supp Λ = ∅, then 〈f,Λ〉 = 0.
b) If ψ ∈ C∞(Ω) and ψ(x) = 1 in an open set A ⊃ supp Λ, then Λψ = Λ.

Proof. (i) by definition. (ii) easy exercise.

4.2. Compact supports.

Theorem 4.7. The following are equivalent:

a) The support of the distribution Λ is compact
b) The distribution Λ is of finite degree and has a of finite degree and has a

unique extension
Λ ∈ C∞(Ω)∗.

Proof. Remember, in C∞(Ω)∗28 we use the locally convex metrizable topology,
defined by the seminorms qn(f) = ‖Dnf

∣∣
Kn
|‖∞ over a compact countable tyhjennys

of the open set Ω. This topology can also be defined by the increasing sequence

of seminorms pn = q0 + q1 + · · · + qn. Since D(Ω) = C∞c (Ω)
dense
⊂ C∞(Ω) and the

inclusion is continuous D(Ω)∗ ⊃ C∞(Ω)∗

28some books call it E(Ω,R).
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Let Λ ∈ C∞(Ω)∗. Since Λ is continuous in C∞(Ω), there exists a seminorm pn,
such that |〈·,Λ〉| ≤ pn. Take a test function f ∈ D(Ω),such that supp f ⊂ Ω rKn.
Obviously pn(f) = 0, so 〈f,Λ〉 = 0. Therefore supp Λ ⊂ Kn. Therefore every Λ ∈
C∞(Ω)∗ is a compactly supported distribution.

For the inverse implication we need PARTITIONS OF UNITY: ykkösen ositus-
lemmaa:

Lemma 4.8. Let (ωi)i∈I be a family of open sets ωi ⊂ R and Ω =
⋃
i∈I ωi. Then

there exists a sequence (!) of functions (ψn)n∈N such that

a) ∀n ∈ N ∃i ∈ I such that suppψn ⊂ ωi.
b)
∑

n∈N ψn = 1 in the set Ω.
c) To every compact K ⊂ Ω there exists an open A ⊃ K and a number m ∈ N

such that
∑m

n=1 ψn = 1 in the set A.

Proof. Classical analysis. (Rudin: Functional analysis p. 146.)

Proof of 4.7 inverse half: Let the distribution Λ ∈ D(Ω)∗ have compact support
supp Λ ⊂ Ω. We construct an extension of Λ into C∞(Ω). By the partitions of unity
lemma 4.8 — as a special case – there exists ψ ∈ D(Ω) = C∞(Ω) such that ψ(x) = 1
jossain avoimessa in set A ⊃ supp Λ. Let K = suppψ. Since Λ ∈ D(Ω)∗, thenthere
exists C1 > 0 and N ∈ N such that for all ϕ ∈ DK(Ω) we have

|〈ϕ,Λ〉| ≤ C1‖ϕ‖N ,

where ‖ϕ‖N = maxj≤N ‖Djϕ‖∞.
By repeating the derivation formula for products (Leibnitz) we get

‖ψϕ‖N = max
j≤N
‖

N∑
α=0

(DN−αψDαϕ)‖∞ ≤ C2‖ϕ‖N ,

where the constant C2 > 0 may depend on ψ. Therefore for every ϕ ∈ D(Ω) we have

|〈ϕ,Λ〉| = |〈ψϕ,Λ〉| ≤ C1‖ψϕ‖N ≤ C1C2‖ϕ‖N ,

so Λ is of finite degree.
The linear form Λ ∈ D(Ω)∗ can be extended to C∞(Ω) ) D(Ω) by

〈f,Λ〉 = 〈ψf,Λ〉,

since the right hand side is defined and linear with respect to f and for all ϕ ∈
D(Ω) we have 〈ϕ,Λ〉 = 〈ψϕ,Λ〉. We have to prove continuity for this extension of
Λ and that will also prove uniqueness, since D(Ω) is dense in C∞(Ω). To check this,
we only have to prove sequential continuity ?? . Let fj → 0 ∈ C∞(Ω). This mean
such that at for all n ∈ N and in all compact C ∈ Ω we have supx∈C |Dnfj(x)| → 0.
Differentiation of products prove such that at ψ fj → 0 inD(Ω), so, since Λ ∈ D(Ω)∗,

〈fj,Λ〉 = 〈ψfj,Λ〉 → 0.

�
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Theorem 4.9. Let Ω = R and let the support of Λ be one point {x}. Then (and
only then) Λ is a linear combination of the Dirac δx and it derivatives

Λ =
m∑
j=0

λj D
jδx.

Proof. We can assume that x = 0. By the previous theorem Λ has finite degree,
say N .

(i) Oletus supp Λ = {0} mean such that at 〈ϕ,Λ〉 = 0 always when 0 /∈ suppϕ.
(ii) We prove, that if ϕ ∈ D(Ω) and Dkϕ(0) = 0 for all k = 0, 1, . . . , N , then
〈ϕ,Λ〉 = 0.

This is suffidcient, since the condition ϕ ∈ D(Ω) and Dkϕ(0) = 0 for all
k = 0, 1, . . . N mean such that at

Ker (Λ) ⊃ Ker (δ) ∩Ker (Dδ) · · · ∩Ker (DNδ),

which by the linear algebra lemma 7.11prove such that at, Λ is a linear
combination of the linear forms δ, Dδ . . .DNδ.

(iii) To prove (ii) take for each η > 0 a compact interval K = [−ρ, ρ] such that

‖DNϕ
∣∣
K
‖∞ ≤ η.

Then29 for all k ≤ N and x ∈ K

|Dkϕ(x)| ≤ η|x|N−k.

Choose a ψ, for which ψ(x) = 1 in some neighbourhood of the origin and
whose support is included in the unit interval of R. We define for all r > 0 :
ψr(x) = ψ

(
x
r
)
)
. For small r we have suppψ ⊂ K . Differentiating products

we find

Dk(ψrϕ)(x) =
∑
β≤k

ck,βD
k−βψ

(
x
r

)
Dβϕ(x)rβ−k,

so

‖ψrϕ‖N ≤ ηC‖ψ‖N ,
whenever r is small enough.

Since the degree Λ is N , there exists a constant C1 such that |〈ψ,Λ〉| ≤
C1‖ψ‖N for all ψ ∈ DK(R). Since Ψr = 1 in a neighbourhood of the origin

|〈ϕ,Λ〉| ≤ C1‖ψ‖N = |〈ψϕ,Λ〉| ≤ C1‖ψrϕ‖N ≤ ηCC1‖ψ‖N .

Since η was arbitrary, this implies, that

|〈ϕ,Λ〉| = 0.

�

29The n-dimensional version is : ‖Dkϕ
∣∣
K
‖∞ ≤ ηnN−k.
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4.3. All distributions as derivatives. A distribution, whose support is one point,
consits of derivatives of the Diracin delta. Dirac delta δx onis in itself the derivative of
the step function (8.5.), and so it is the second derivative of the continuous function.
f(t) =max{t− x, 0}. By induction, every distribution, whose support is a finite set,
is a linear combination of various derivatives of functions, in fact a higher derivative
of some function. In some sense all other distributions are such derivatives as well, at
least locally. Therefore, distributions form a minimal mathematical sysem containing
al derivatives of continuous functions. We will state 3 theorems on this subject:

Theorem 4.10. Let Λ ∈ D(Ω)∗ and K ⊂ Ω a compact set in an open Ω ⊂ R.
There exists a continuous function f : Ω→ R, and a number α ∈ N such that for

all 30 ϕ ∈ DK(Ω)

〈ϕ,Λ〉 = (−1)α
∫

Ω

Dαϕ (x) f(x) dx.

Proof. We may assume, that K ⊂ [0, 1]. For all ψ ∈ D[0,1](Ω) we can define the
zero extension ψ : R → R : x 7→ ψ(x), when x ∈ Ω, and 0 elsewhere. N0w for all
x ∈ [0, 1] and ψ ∈ D[0,1](Ω) we have

ψ(x) = ψ(x)− 0 = ψ(x)− ψ(0) =

∫ x

0

Dψ(t) dt.

Since differentiation D : DK(Ω) → DK(Ω) : ϕ 7→ Dϕ is a bijection, also higher
derivatives are bijectionsm so themapping kuvauksella Dn+1 : DK(Ω)→ DK(Ω) has
an inverse (Dn+1)−1, of course linear. So we can define a linear form Λ1 : D(Ω)→ R
by setting for all ϕ ∈ DK(Ω)

〈ϕ,Λ1〉 = 〈(Dn+1)−1ϕ,Λ〉,

eli

〈Dn+1ϕ,Λ1〉 = 〈ϕ,Λ〉.
The mapping Λ 7→ Λ1 is the restriction of the algebraic transpose of n + 1-fold
integration (Dn+1)−1 : DK(Ω)→ DK(Ω) to the space DK(Ω)∗.

We prove, that

(i) Λ1 is continuous in the sense of the integral norm ‖·‖1 in DK(Ω) ⊂ L1(K, dx).
(ii) Λ1 can be extended to a continuous linear form Λ1 ∈ L1(K, dx)∗ = L∞(K, dx),

in the space L1(K, dx) ie.

〈ϕ,Λ〉 = 〈Dn+1ϕ,Λ1〉 =

∫
K

DN+1ϕ g(x) dx

; g ∈ L∞(K, dx).
(iii)

〈ϕ,Λ〉 =

∫
K

DN+2ϕf(x) dx

; f ∈ C(Ω).

30Remark: ϕ ∈ DK(Ω)!
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(i) We prove, that there exists a constant C > 0 such that for all ϕ ∈ DK(Ω) is

|〈ϕ,Λ1〉| ≤ C

∫
K

|ϕ(x)| dx.

Since for all x ∈ [0, 1] and ψ ∈ D[0,1](Ω) ψ(x) =
∫ x

0
Dψ(t) dt, so ‖ψ(x)‖∞ ≤∫ x

0
|Dψ(t)| dt. SApplying the same reasoning to the derivatives, one finds out that

for all n ∈ N
‖ψ‖n = ‖Dnψ‖∞ ≤

∫ 1

0

|Dn+1ψ(x)| dx.

Since Λ ∈ D(Ω)∗, there exists N ∈ N ja C > 0 such that for all ϕ ∈ DK(Ω)

|〈ϕ,Λ〉| ≤ C‖ϕ‖N ,
so

|〈DN+1ϕ,Λ1〉| = |〈ϕ,Λ〉| ≤ C

∫ 1

0

|DN+1ϕ(x)| dx.

and therefore for all ϕ ∈ DK(Ω)

|〈ϕ,Λ1〉| ≤ C

∫
K

|ϕ(x)| dx,

as propoded.

(ii) By Hahn and Banachi corollary ?? there exists an extension of each L1(µ)-
jcontinuous linear form Λ1 ∈ DK(Ω)′ to a continuous linear form in L1(K, dx).31

Λ1 ∈ L1(K, dx)∗ = L∞(K, dx), ie. exists a Borel-measurable g ∈ L∞(K, dx) such
that

〈ϕ,Λ〉 = 〈Dn+1ϕ,Λ1〉 =

∫
K

DN+1ϕ g(x) dx.

(iii) Extend g as zero to the whole space R and integrate by parts:

〈ϕ,Λ〉 =

∫ ∞
−∞

DN+1ϕ g(x) dx = (−1)N
∫ ∞
−∞

DN+2ϕ

(∫ x

−∞
g(t) dt

)
dx.

Define f(x) =
∫ x
−∞ g(t) dt, and now f is continuous and

〈ϕ,Λ〉 = (−1)N
∫ ∞
−∞

DN+2ϕ

(∫ x

−∞
g(t) dt

)
dx = (−1)N

∫
−Ω

DN+2ϕf(x) dx.

�

Theorem 4.11. Let Λ ∈ D(Ω)∗ and K ⊂ V ⊂ Ω ⊂ R, where K = supp Λ is
compact and V and Ω open. We denote the degree of Λ by N . (N <∞, Ks. ??.)

There exist continuous functions f1, . . . , fN+2 : Ω → R, such that supp fi ⊂ V
and

Λ =
N+2∑
β=1

Dβ fβ.

31If a measure µ is S is sigma-finite, then the dual of L1(µ) is — by the well known mapping
— isometrically isomorphic to L∞(µ). However, except in rather trivial cases, the dual of L∞(µ)
is much bigger than L1(µ). Elements of L∞(µ)∗ can be identified with bounded signed finitely
additive measures is S that are absolutely continuous with respect to µ.
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Proof. Choose some open W such that K ⊂ W ⊂ W ⊂ V . Apply theorem 4.10
Choosing for K W , and fins a continuous f : Ω→ R such that for all ϕ ∈ DW (Ω)

(4.1) 〈ϕ,Λ〉 = (−1)N
∫

Ω

DN+2ϕf(x) dx.

The equation 4.1 remains valid, even if f is multiplied by any continuous function
h, for which the restriction h

∣∣
W

is 1 and supph ⊂ V .
Choose for h a function ψ ∈ D(Ω) such that suppψ ⊂ W and ψ = 1 in some open

set U ⊃ K. For every ϕ ∈ D(Ω)

〈ϕ,Λ〉 = 〈ψϕ,Λ〉

= (−1)N
∫

Ω

DN+2(ψϕ) f(x) dx

= (−1)N
∫

Ω

N+2∑
m=0

(
N + 2

m

)
DN+2−mψDmϕf(x) dx

�

Theorem 4.12. Let Λ ∈ D(Ω)∗.
There exists a sequence of continuous functions (gn)n∈N such that

a) No compact set K ⊂ Ω intersects more than finitely many of the supports of
the functions gn and

b) Λ =
∑

n∈ND
ngn. (locally finite sum!)

If Λ is of finite degree, then finitely many will do in the sum gn.

Proof. Choose (Exercise!) compact intervals Qi and open sets Vi (i=1,2,. . . ) such
that

(i) Qi ⊂ Vi ⊂ Ω,
(ii)

⋃
i∈N Vi = Ω, ja

(iii) no compact set K ⊂ Ω intersects more than finitely many Vi.

Ny lemma 4.8 there exists a sequence of functions ψn ∈ D(Ω) such that

a) ∀n ∈ N∃i ∈ N such that suppψn ⊂ Vi.
b)
∑

n∈N ψn = 1 in Ω.
c) For each compact K ⊂ Ω there exists an open A ⊃ K and a number m ∈ N

such that
∑m

n=1 ψn = 1 in A.

Apply 4.11 to each product distribution ΨiΛ and find finite sums:

ψiΛ =
∑
α

Dαfi,α.

Define for all α ∈ N
gα =

∑
α

fi,α

niticing that there are only finitely many nonzero terms in the sum when we restrict
to a compact set. Therefore every gα is continuous in Ω and no compact set K ⊂ Ω
intersects the support of more than finitely many functions gn.
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Since 1 =
∑

n∈N ψn, every ϕ ∈ D(Ω) can in compact sets be expressed as a finite
sum ϕ =

∑
n∈N ϕψn, we have

〈ϕ,Λ〉 = 〈
∑
n∈N

ϕψn,Λ〉 = 〈ϕ,
∑
n∈N

Λψn〉,

and siis

Λ =
∑
i∈N

ψiΛ

=
∑
i∈N

∑
α

Dαfi,α

=
∑
α

Dα
∑
i∈N

fi,α

=
∑
α

Dαgα.

If finally Λ is of finite degree, then by the previous theorem finitelyy many functions
are sufficient. �

5. Convolution

5.1. Convolutions of functions. Seuraavassa Ω = R.

Definition 5.1. The Convolution of two functions

u, v : R→ C

is the function

(u ∗ v)(x) =

∫
R
u(t)v(x− t) dt,

when the Lebesgue–integral exists.

Remark 5.2. If we denote by τx(v) the function v shifted by x: τx(v)(t) = v(t−x),
and we denote by ṽ the function v reflected ṽ(t) = v(−t), then τx(ṽ)(t) = v(x − t)
and the definition of convolution becomes

(u ∗ v)(x) =

∫
R
u(t) τx(ṽ)(t) dt =

∫
R
u τx(ṽ)

Remark 5.3. Convolutions have some well known properties (real analysis!)

(1) GFenerally u ∗ v is as”smooth” as the smoother function u or v.
(2) u ∗ v = v ∗ u.
(3) In Fourier–transform convolution becomes product.

(uv)̂ = û ∗ v̂.

(4) etc.
(5) . . . .
(6) . . .
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5.2. Convolutions of distributions and functions.

Definition 5.4. The Convolution of a function ϕ ∈ D and a distribution Λ ∈ D(R)∗

is the C∞−function32

(ϕ ∗ Λ)(x) = 〈τx(ϕ̃),Λ〉,
which — of course — coincides with the previous definition 5.1, if Λ = Λu is a
function.33

Definition 5.5. The distribution Λ ∈ D(R)∗ is translated to the right by x if it is
replaced by τxΛ, for which

〈ϕ, τxΛ〉 = 〈τ−xϕ,Λ〉.
Check sign! XXX

Theorem 5.6. The convolution of a function and a distribution ha sthe following
properties: for all Λ ∈ D(R), ϕ, ψ ∈ Dr, n ∈ N, x, y ∈ R:

(i) τx(Λ ∗ ϕ) = (τxΛ) ∗ ϕ = Λ ∗ (τxϕ)
(ii) Dn(Λ ∗ ϕ) = (DnΛ) ∗ ϕ = Λ ∗ (Dnϕ)
(iii) (Λ ∗ ϕ) ∗ ψ = Λ ∗ (ϕ ∗ ψ)

Todistus. Obviously

(i) τx ◦ τx = τx+y and (τxϕ)∼ = τxϕ̃

(i):
(τx(Λ ∗ ϕ))(y) = (Λ ∗ ϕ)(y − x) = 〈τy−xϕ̃,Λ〉,
((τxΛ) ∗ ϕ)(y) = (τxΛ)(τyϕ̃) = 〈τy−xϕ̃,Λ〉,
(Λ ∗ (τxϕ))(y) = (Λ(τy(τxϕ)∼) = 〈τy−xϕ̃,Λ〉.

(ii): Appy Λ∗ to both sides of

τx((D
nϕ)∼) = (−1)nDn(τxϕ̃)

and find
(Λ ∗ (Dnϕ))(x) = ((DnΛ) ∗ ϕ)(x),

which is the second equation in (ii). To prove the first we write for all r > 0

ηr =
τ0 − τr
r

and apply (i):
ηr(Λ ∗ ϕ) = Λ ∗ (ηrϕ).

When r → 0, then
ηrϕ→ Dϕ ∈ D(R),

so for all x ∈ R
τx((ηrϕ)∼)→ τx(Dϕ)∼ ∈ D(R),

and
lim
r→0

(Λ ∗ (ηrϕ))(x) = (Λ ∗ (Dϕ))(x).

32A function like the smoother factor!
33Cf. 5.13 and 6.25.
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Combining these we find

D(Λ ∗ ϕ) = Λ ∗ (Dϕ),

and by rewpetition (ii).

(iii): For every ψ and ϕ ∈ D(R) :

(5.1) (ϕ ∗ ψ)∼(t) =

∫
R
(ψ̃(s)) (τsϕ̃)(t) ds.

We write supp ψ̃ = Kψ̃ and supp ϕ̃ = Kϕ̃ amd K = Kψ̃ +Kϕ̃. In 5.1 the right hand
side can be interpreted as an integral of the D(R)−valued continuous function

s 7→ ψ̃(s)τsϕ̃

over the compact set Kψ̃, otside of which it vanishes. Using theorems on vector
valued integration (BOCHNER INTEGRAL) Wrt. a Borel measure will finish the
proof.34 Using this, 5.1 boils down to

(5.2) (ϕ ∗ ψ)∼ =

∫
Kψ̃

ψ̃(s) τsϕ̃ ds ∈ D(R).

This gives
(Λ ∗ (ϕ ∗ ψ))(0) = 〈(ϕ ∗ ψ)∼,Λ〉

=

∫
Kψ̃

ψ̃(s) 〈τsϕ̃,Λ〉 ds

=

∫
R
ψ(−s) (Λ ∗ ϕ)(s) ds

= ((Λ ∗ ϕ) ∗ ψ)(0).

This is (iii) at 0. The general case comes from translation by τ−xψ. �

5.3. Convolution -smoothing = Approximative identity.

Definition 5.7. Let ψ ∈ D(R) be non-negative, suppψ ⊂ [−1, 1] and
∫

R ψ = 1. For
all n ∈ N define approximative identity ψn(x) = nψ(nx), and notice ψn ∈ D(R) is
non-negative, suppψ ⊂ [− 1

n
, 1
n
] and

∫
R ψn = 1. Also ‖Dkψn‖∞ = n(k+1)‖Dkψ‖∞ for

all k ∈ N.

Definition 5.8. The Convolution -smoothing of a Lebesgue-measurable function
f : R→ R is the convolution

fn = (f ∗ ψn) : R→ R : x 7→
∫

R
f(x− t)ψn(t) dt.

Remark 5.9. The Approximative identity has the following properties: for all ϕ ∈
D(R), Λ ∈ D(R)∗

(1) ϕ ∗ ψn → ψ ∈ D(R).
(2) ψn ∗ Λ→ Λ ∈ D(R)∗ in the topology σ(D(R)∗,D(R)). In particular smooth

functions are weakly dense in D(R)∗ .

34Cf. Rudin, Functional Analysis Thm 3.27,
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Proof. For each continuous function f : R → C we know f ∗ ψn → f uniformly
in compact sets. Applying this to function f = Dkϕ gives uniform convergence
in compact sets Dk(ϕ ∗ ψn) = Dkϕ ∗ ψn → Dkϕ. Since suppϕ is compact and
suppψ ⊂ [− 1

n
, 1
n
], then the supports of all ϕ∗ψn are included in some same compact

set this implying ia R for all k uniform convegence Dk(ϕ ∗ ψn)→ Dkϕ. This proves
(1).

(2) follows now from 5.6 (iii), since

〈ϕ̃,Λ〉 = (Λ ∗ ϕ)(0)

= lim(Λ ∗ (ψn ∗ ϕ))(0)

= lim((Λ ∗ ψn) ∗ ϕ)(0)

= lim(Λ ∗ ψn)(ϕ̃). �

5.4. The convolution of two distributions.

Definition 5.10. The convolution of two distributions Λ1 and Λ2 ∈ D(R)∗ is the
distribution Λ1 ∗ Λ2 = δ0 ◦ (Λ1 ∗ ·) ◦ (Λ2 ∗ ·):

ϕ 7→ 〈ϕ , Λ1 ∗ Λ2〉 = (Λ1 ∗ (Λ2 ∗ ϕ))(0) ∈ C,
which turns out to be well defined at lest, when one of the original ones Λ1 and Λ2

has compact support. 35

Remark 5.11. In order to find out when there exists a continuous linear mapping
like

D(R)
Λ2∗·→ D(R)

Λ1∗·→ D(R)
δ0→ C

we check,when the parts are well defined and continuous. We have to take care that
that (Λ1 ∗ ·) is defined and continuous in the image set {Λ2 ∗ ϕ

∣∣ ϕ ∈ D(R)}. The
following theorems discus such that is.

Theorem 5.12. Let Λ ∈ D(R)∗. The mapping L = Λ∗· has the following properties:

(1) L is continuous D(R)→ C∞(R).
(2) L commutes with translations, ie. for all x ∈ R we have τxL = L ◦ τx
(3) There are no other continuous linearmappings commuting with translation
D(R)→ C∞(R) except the ones mantioned above; L = Λ∗·, where Λ inD(R)∗.

(4) Λ1 ∗ · = Λ2 ∗ · =⇒ Λ1 = Λ2, so tje correspondence Λ mapstoΛ∗ · is bijective.

Proof. (1) In ?? we proved that Λ ∗ · ∈ C∞(R). By?? it is sufficinet to provethat
the restriction of L to every subspace DK(R) is continuous. Since both DK(R) and
C∞(R) are Fréchet-spaces, it is sufficient to prove that they have (sequentially)
closed graphs [??]. Assume ϕn → ϕ ∈ DK(R) and Λ ∗ ϕn → f ∈ DK(R). We have
to prove that for all x ∈ R is f(x) = (Λ ∗ϕ)(x). Let x ∈ R. Since τxϕ̃n → τxϕ̃ in the
space D(R), then

f(x) = lim
n→∞

(Λ ∗ ϕn)(x) = lim
n→∞
〈τxϕ̃n,Λ〉 = 〈τxϕ̃,Λ〉 = (Λ ∗ ϕ)(x).

(2) Implied by the previous and L ◦ τx = τx ◦ L.

35Λ2 ∗ ϕ ∈ D(R). But check also 5.14, and??.
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(3) Let L be continuous and translation invariant. Define Λ : D(R)→ C by setting
〈ϕ,Λ rangle = (Lϕ̃)(0). Since reflection ϕ 7→ ϕ̃ is a continuous linear mapping
D(R)→ D(R) and evaluation ∆0 : ϕ 7→ ϕ(0) is also continuous, Λ is a distribution.
We assumed translation invariance τxL = L ◦ τx, so

(Lϕ)(x) = (τ−xLϕ)(0) = (Lτ−xϕ)(0)

= 〈(τ−xϕ)∼,Λ rangle = 〈τxϕ̃ ,Λ rangle = (Λ ∗ ϕ)(x).

(4) It is sufficient to prove that Λ ∗ · = 0 =⇒ Λ = 0. Let Λ ∗ · = 0. For all
ϕ ∈ D(R) is

〈Λ, ϕ̃〉 = (Λ ∗ ϕ)(0) = 0.

�

Definition 5.13. Extend the definitions 5.4 by agreeing on that the convolution of
a function ϕ ∈ C∞(R) and a compactly supported distribution Λ ∈ D(R)∗ is the
C∞−function

(ϕ ∗ Λ)(x) = 〈τx(ϕ̃),Λ〉.

Theorem 5.14. The convolution of a function ϕ ∈ C∞(R) and compactly supported
distribution Λ ∈ D(R)∗ has the following properties for all x ∈ R and n ∈ N:

(i) τx(Λ ∗ ϕ) = (τxΛ) ∗ ϕ = Λ ∗ (τxϕ)
(ii) Λ ∗ ϕ ∈ C∞(R)
(iii) Dn(Λ ∗ ϕ) = (DnΛ) ∗ ϕ = Λ ∗ (Dnϕ)

If ψ ∈ D(R), then

(iv) Λ ∗ ϕ ∈ D(R) and
(v) Λ ∗ (ϕ ∗ ψ) = (Λ ∗ ϕ) ∗ ψ = (Λ ∗ ψ) ∗ ϕ.

Todistus. (i) – (iii) are proved like in 5.6. To prove (iv) notice that supp(τxψ̃) =
x − suppψ, so if supp Λ ∩ (x − suppψ) = ∅, then (Λ ∗ ψ)(x) = 0. In other words
(Λ ∗ ψ)(x) = 0, when x /∈ supp Λ ∩ suppψ and so supp(Λ ∗ ψ) ⊂ supp Λ + suppψ
is compact.

Claim (v) is proven by reducing it to the corresponding statement in theorem 5.6:
Take an open, bounded set W ⊃ supp Λ. Choose a (compactly supported) function
ϕW ∈ D(R), for which ϕ̃W = ϕ̃ in W + suppψ. Now (ϕ ∗ψ)∼ = (ϕW ∗ψ)∼ in W , so

(5.3) (Λ ∗ (ϕ ∗ ψ))(0) = (Λ ∗ (ϕW ∗ ψ))(0).

Since for all −s ∈ suppψ we have
τsϕ̃ = τsϕ̃W in W , then Λ ∗ ϕ = Λ ∗ ϕW in − suppψ. So

(5.4) ((Λ ∗ ϕ) ∗ ψ)(0) = ((Λ ∗ ϕW ) ∗ ψ)(0).

Since supp(Λ ∗ ψ) ⊂ (supp Λ + suppψ),

(5.5) ((Λ ∗ ψ) ∗ ϕ)(0) = ((Λ ∗ ψ) ∗ ϕW )(0).

The claiim follows for x = 0since the right sides of the equations (5.3)–(5.5) arte
the same by 5.6. The general case is again proved by applying the special case ti the
function τ−xψ. �
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Remark 5.15. The definition 5.10 is OK so the convolution of the distributions
Λ1 and Λ2 ∈ D(R)∗, namely Λ1 ∗ Λ2 exists, when at least one of them has compact
support. By definition 5.10 for all ϕ ∈ D(R)

〈ϕ , Λ1 ∗ Λ2〉 = (Λ1 ∗ (Λ2 ∗ ϕ))(0) ∈ C,

so Λ1 ∗ Λ2 ∈ D(R)′. Let us verify that Λ1 ∗ Λ2 ∈ D(R)∗. Assume that ϕn → 0. By
(1) in theorem 5.12 (Λ2 ∗ ·) is continuous D(R) → C∞(R), so Λ2 ∗ ϕn → 0 in the
topology of C∞(R). If supp Λ is compact, then Λ2 ∗ϕn → 0 in the topology of D(R).
Therefore 〈ϕ , Λ1 ∗ Λ2〉 = (Λ1 ∗ (Λ2 ∗ ϕn))(0)→ 0.

Theorem 5.16. Assume Λ1,Λ2 and Λ3 ∈ D(R)∗.

(1) If at least one of the distributions Λ1, Λ2 is compactly supported, then Λ1 ∗
Λ2 = Λ2 ∗ Λ1.

(2) If at least one of the distributions Λ1, Λ2 has compact supprot kantajista
K1, K2, then KΛ1∗Λ2 ⊂ K1 +K2 .

(3) If at least two of the distributionsΛ1, Λ2, Λ3 has compact support K1, K2, K3,
then (Λ1 ∗ Λ2) ∗ Λ3 = Λ1 ∗ (Λ2 ∗ Λ3).36

(4) For all n ∈ N is DnΛ1 = (Dnδ0) ∗Λ1, in particular δ ∗Λ1 = Λ1. has compact
support K1, K2, then Dn(Λ1 ∗ Λ2) = (DnΛ1) ∗ Λ2 = Λ1 ∗ (DnΛ2).

Proof. (1) Let ϕ, ψ ∈ D(R). Since function’s convolution is commutative then
by 5.6

(Λ1 ∗ Λ2) ∗ (ϕ ∗ ψ) = Λ1 ∗ (Λ2 ∗ (ϕ ∗ ψ)) = Λ1 ∗ ((Λ2 ∗ ϕ) ∗ ψ) = Λ1 ∗ (ψ ∗ (Λ2 ∗ ϕ)).

If K2 is compact, then apply theorem 5.6 uudelleen. If taas K1 is compact, then
apply theorem 5.14. In both casers we get

(Λ1 ∗ Λ2) ∗ (ϕ ∗ ψ) = (Λ1 ∗ ψ) ∗ (Λ2 ∗ ϕ).

Since ϕ ∗ ψ = ψ ∗ ϕ, a similarr calculation gives

(Λ2 ∗ Λ1) ∗ (ϕ ∗ ψ) = (Λ2 ∗ ϕ) ∗ (Λ1 ∗ ψ).

In both cases the right hand side is the convolution of 2 functions, hence commuta-
tuive. So they are the same. Therefore

(Λ1 ∗ Λ2) ∗ (ϕ ∗ ψ) = (Λ2 ∗ Λ1) ∗ (ϕ ∗ ψ)

eli

((Λ1 ∗ Λ2) ∗ ϕ) ∗ ψ = ((Λ2 ∗ Λ1) ∗ ϕ) ∗ ψ.
By the uniqueness part of the proof of 5.12 Λ1 ∗ Λ2 = Λ2 ∗ Λ1.

(2) Let ϕ ∈ D(R). A littloe calculation show such that at

〈ϕ,Λ1 ∗ Λ2〉 = 〈(Λ2 ∗ ϕ̃)∼,Λ1〉.

By (1) we may assume that K2 is compact. By the proof of 5.6,

supp(Λ2 ∗ ϕ̃) ⊂ K2 −Kϕ.

Therefore (Λ1 ∗ Λ2) = 0, when K1 ∩Kϕ −K2 = ∅, eli K1 +K2 ∩Kϕ = ∅.

36WARNING! FAILS if not compact support!
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(3) By (2) bith (Λ1 ∗ Λ2) ∗ Λ3 and u ∗ (Λ2 ∗ Λ3) are defined, when at lest 2 of
K1, K2, K3 are compact. If ϕ ∈ D(R), then by the definition of convolution of
distributions

(Λ1 ∗ (Λ2 ∗ Λ3)) ∗ ϕ = Λ1 ∗ ((Λ2 ∗ Λ3) ∗ ϕ) = Λ1 ∗ (Λ2 ∗ (Λ3 ∗ ϕ)).

If K1 is compact, then

((Λ1 ∗ Λ2) ∗ Λ3) ∗ ϕ = (Λ1 ∗ Λ2) ∗ (Λ3 ∗ ϕ) = Λ1 ∗ (Λ2 ∗ (Λ3 ∗ ϕ)),

since by 5.6 Λ3 ∗ϕ ∈ D(R). Combining these observations gives (3) if K3 is compact.
If K3 is not compact, then K1 is compact, and the previous case combined with
commutativity (1) gives:

Λ1∗(Λ2∗Λ3) = Λ1∗(Λ3∗Λ2) = (Λ3∗Λ2)∗Λ1 = Λ3∗(Λ2∗Λ1) = Λ3∗(Λ1∗Λ2) = (Λ1∗Λ2)∗Λ3.

(4) If ϕ ∈ D(R), then δ0 ∗ ϕ = ϕ, since

(δ0 ∗ ϕ)(x) = δ0(τxϕ̃) = (τxϕ̃)(0) = ϕ̃(−x) = ϕ(x).

So by (3) and 5.6 we infer thata

(DnΛ1) ∗ ϕ = Λ1 ∗Dnϕ = Λ1 ∗Dn(δ0 ∗ ϕ) = Λ1 ∗ (Dnδ0) ∗ ϕ.
(5) By (4),(3) and (1):

Dn(Λ1 ∗ Λ2) = (Dnδ0) ∗ (Λ1 ∗ Λ2) = ((Dnδ0) ∗ Λ1) ∗ Λ2 = (DnΛ1) ∗ Λ2

and

((Dn)δ0) ∗ Λ1 ∗ Λ2 = (Λ1 ∗Dnδ0) ∗ Λ2 = Λ1 ∗ ((Dnδ0) ∗ Λ2) = Λ1 ∗DnΛ2.

6. Fourier transforms of tempered distributions

6.1. The space S and tempered distributions.

Definition 6.1. A tempered distribution 37, is an element of the topological dual
of the space S defined below.

Definition 6.2. The space of rapidly decreasing functions is

S = {f ∈ C∞(R)
∣∣ sup
x∈R

(1 + x2)N |Dnf(x)| <∞ ∀N, n ∈ N}.

So a smooth function f is rapidly decreasing, if and only if every derivative converges
to 0 in ±∞, even if itis multiplied with any polynomial.
S has the locally convex topology of the seminorms

sup
x∈R

(1 + x2)N |Dnf(x)| (N, n ∈ N)

topology lla.

Theorem 6.3. S is a Fréchet-space.

Proof. Easy. �

Theorem 6.4. S relates to D(R) like this:

(1) D(R) is dense in the space S.

37Engl. tempered distribution.
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(2) Inclusion D(R)→ S is continuous38.
(3) S∗ ⊂ D(R)∗ so tempered distributions are distributions in the previous sense.

Proof. (a) Let f ∈ S. Choose ψ ∈ D(R) such that ψ(x) = 1, when |x| ≤ 1. Define
fj(x) = f(x)ψ(x

j
). We have to prove that for all N ∈ N (1 + x2)NDn(fj − f) → 0

uniformly. We write P (x) = (1 + x2)N

P (x)Dn(fj(x)− f(x)) = P (x)Dn
(
f(x) (ψ(x

j
)− 1

))
= P (x)

n∑
k=0

Dkf(x) ·Dn−k(ψ(x
j
)
)
− 1).

When j > m, then Dn−k(ψ(x
j
)
)
− 1) = 0 in the interval [−m,m]. Since f is rapidly

decreasing pN,k(f) = supx∈R(1 + x2)N |Dnf(x)| < ∞, for all k = 0, . . . , n. We are
done!

(b) Since polynomials are continuous and therefore bounded in compact sets, S
induces to its subspaces DK(R) their original topology, and so does D(R). So the
inclusions DK(R) → S are continuous, so by the properties of the direct inductive
limit, ?? inclusion D(R)→ S is continuous.

(c) follows from (a) and (b). �

Example 6.5. The following are tempered distributions :

a) Consider
b) positive Borel-mesures µ, such that there exists k ∈ N such that:∫

R

dµ(x)

(1 + |x|2)k
<∞

c) meassruable functions g, such that there exists p ∈ [1,∞[ and N > 0 such
that ∫

R

(
g(x)

(1 + |x|2)N

)p
<∞

d) polynomials.

Proof. Exercise (Ex set 11).

Lemma 6.6. The derivative of a tempered distribution is a tempered distribution.

Proof. The derivative of a rapidly decreasing function is rapidly decreasing, so
the claim follows from the definition of distribution derivative. �

Remark 6.7. More properties of tempered distributions will follow later — partly
proven using Fourier transforns.

The continuity of differentiation and of multiplication by certain functions can be
proven now already:

Theorem 6.8. The following linear mappings S → S are continuous :

(1) Differentiation.
(2) Multiplication by a polynomial.

38The non-metrizable space D(R) cannot be a subspace of S:n subspace.
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(3) Multiplication by a rapidly decreasing function.

Todistus. Exercise (set 11). �

6.2. The classical Fourier-transform.

Definition 6.9. The Fourier-transform is defined in various function spaces by
successive extension of the definition.

For simplicity of notation — later — we replace in R Lebesgue neasure dx, by
dm = 1√

2π
dx.

Definition 6.10. The Fourier-transform of a L1(R)−function f , denoted F(f) = f̂
is defined by the classical formula:

f̂(t) =
1√
2π

∫
R
f(x)e−itx dx =

∫
R
f(x)e−itx dm.

Remark 6.11. f is complex valued (can be real), so is the transform f̂ .

Both f̂ and the mapping F : f 7→ f̂ are called Fourier-transform !
In short hand::

f̂(t) =

∫
R
fe−t dm,

where the measure and also the exponential function are modified: by setting

et(x) = eixt.

We redefine also convolution by setting:

(f ∗̂ g)(x) =
1√
2π

(f ∗ g)(x) =

∫
R
f(x− y)g(y) dm(y).

Now the definition above becomes even shorter:

f̂(t) = (f ∗̂ et)(0).

Remark 6.12. et(x) = eitx has the following properties:

a) et(x + y) = et(x)et(y), ie. et is a group homomorphism (R,+) → (C∗, ·).
The range z ∈ C

∣∣ |z| = 1}. Such maps are called characters of the group39.
(R,+) ”karakteeri”.

b) et(x) = ex(t)
c) Det = itex so for each polynomial P (z) =

∑
λjz

j we have∑
λj D

j et = P (it) · et

If If we write
∑
λj D

j = P (D), then

P (D) et = P (it) · et.

Theorem 6.13. For L1(R)−functions the Fourier-transformation F : f 7→ f̂ has
the properties: For all f, g ∈ L1(R) and x, t ∈ R:

a) F is linear

39This name is not needed in this course, nut gives the possibility ti generalize to groups. Haar
measure!
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b) (τxf)ˆ = e−xf̂

c) (exf)ˆ = τ−xf̂

d) (f ∗̂ g)ˆ = f̂ ĝ

e) (f
λ
)ˆ(t) = λf̂(λt), when λ > 0.

Proof. (a) is obvious.

(b) (τxf)ˆ(t) =

∫
R
(τxf)e−t dm =

∫
R
fτ−xe−t dm =

∫
R
fe−t(x)e−t dm = e−x(t)f̂(t).

(c) (exf)ˆ(t) =

∫
R
(exf)e−t dm =

∫
R
fe−(t−x) dm = τ−x(t)f̂(t).

(d) and (e) are exercises (Set 11). Hint: (d) Fubini, (e) linear change of variable. �

Definition 6.14. The Fourier-transform for L2(R)−functions f is defined by the
following process:

(1) In L1(R) ∩ L2(R) the Fourier-transform is already defined.
(2) L1(R) ∩ L2(R) is dense in the space L2(R).
(3) The Fourier-transform is a ‖ · ‖2-isometry L1(R) ∩ L2(R) → L2(R) and can

therefore be extended to an isometry in all of L2(R).
(4) The Fourier-transform F turns out to be surjective L2(R)→ L2(R), so it is

a Hilbert-space isomorphism.(Plancherel theorem.) So F also preserves
inner products in L2(R) sisätulon.(Parseval formula.)

(5) In the space L1(R) ⊂ L2(R) The inverse of the Fourier-transform F−1 has
the calssical foormula40 (Inversion formula.):

F−1g(x) =
1√
2π

∫
R
g(t)eixt dt =

∫
R
gex dm = (g ∗̂ ex)(0).

Remark 6.15. We nwxt define Fourier-transformation for rapidly decreasing func-
tions. As a side product we find proofs for the classical L2(R)–theorems above

6.3. Fourier-transformations of rapidly decreasing functions.

Theorem 6.16. a) Por any function f ∈ S we have:

(Df)ˆ(t) = itf̂(t) and

(xf)ˆ(t) = −Df̂(t).

and so for every polynomial P (z)

(P (D) f)ˆ(t) = P (it) · f̂(t) and

(P · f)ˆ(t) = P (−D)f̂(t).

b) The Fourier-transform

F : f 7→ f̂(t) =

∫
R
fe−t dm

is a continuous linear mapping 41 S → S.

40Pay attention to the sign of the exponent!
41Later in 6.19 it turns out to be aan isomorphism.
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Proof. (a) By 6.8 Df ∈ S.

((Df)ˆ)(t) = ((Df) ∗̂ et)(0) = (f ∗̂Det)(0) = (f ∗̂ itet)(0) = it · (f ∗̂ et)(0) = itf̂(t),

so the first equation in (a) is proven. To prove the other calculate the derivative Df̂
by its very original definition:

f̂(t+ ε)− f̂(t)

ε
=

1

ε

(∫
R
f(x)e−i(t+ε)x dm−

∫
R
f(x)e−itx dm

)
= i

∫
R
xf(x)

e−ixε − 1

ixε
e−ixt dm(x)

→ i

∫
R
xf(x) e−ixt dm(x) = −(xf)ˆ(t).

Movin the limit out of the integral is legal by Lebesgue’s dominated convergence
theorem and the fact such that at xf ∈ L1(R) and eixt| = 1. So the claim is true for
the first derivatInduction gives the general case.

(b) Let f ∈ S. We write g(x) = (−1)kxkf(x). Then g ∈ S. By (a) ĝ = Dkf̂ and
for all polynomials

P (x)Dkf̂(x) = P (x)ĝ(x) = (P (−D)g)ˆ(x)

is a bounded function, since P (D)g ∈ L1(R). Therefore f̂ ∈ S.
If fi → f in the space S, then a little calculationproves that fi → f also in the

space L1(R). This implie such that at f̂i(t)→ f̂(t) for all t ∈ R. By the closed graph
theorem, pointwise convergence gives convergence in the space S. (Exercise 9.1) �.

The next theorems will lead to a proof of the inversion theorem. S.

Theorem 6.17. In L1(R)− the Fourier-transform has the properties, for every f ∈
L1(R)

‖f̂‖∞ ≤ ‖f‖1.

f̂ : R→ C is a continuous function, vanishing in ±∞
Proof. ‖f̂‖∞ ≤ ‖f‖1 is implied by |et(x)| = 1 for all x ∈ R.

Let f ∈ L1(R). Since S is dense in the space L1(R),we can find a sequence

(fn)N ⊂ S, for which ‖fn − f‖1 → 0. Since F : S → § every f̂n ∈ S, and so it is a

continuous function and häviää at ±∞. Since we have proven ‖f̂‖∞ ≤ ‖f‖1 for all
f ∈ L1(R), also ‖fn − f‖∞ ≤ ‖fn − f‖∞ → 0, so f is a continuous function and
vanishes at ±∞. �

Lemma 6.18. The ”Gauss function” φ(x) = e−x
2/2 is rapidly decreasing and has the

properties

a) φ̂ = φ.

b) φ(0) =
∫

R φ̂ dm.

Todistus. (a) φ is a solution of the linear differential equation y′ + xy = 0 So is

φ̂. Therefore φ/φ̂ is a constant . Since both functions have value 1 at 0, they must

coincide: φ̂ = φ.
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(b) In combination with (a) the classical definition of Fourier-transform gives:

φ(0) = φ̂(0) =

∫
R
φ dm =

∫
R
φ̂ dm. �

Theorem 6.19. (Inversion formula) The Fourier-trnsformation for rapidly dec-
reasing function has the following properties:

a)

g(x) =

∫
R
ĝex dm.

b) The Fourier-transform

F : f 7→ f̂(t) =

∫
R
fet dm

is a linear homeomorphism S → S.
c) The inversion formula holds for L1(R)–functions in the sense that if both f

and f̂ are integrable, then for almost all x ∈ R i

f(x) =

∫
R
f̂ ex dm.

Todistus. If both f and g are integrablem then Fubini applies to∫
R

∫
R
f(x)g(y)e−ixydm

2,

giving

(6.1)

∫
R
f̂ g dm =

∫
R
fĝ dm.

(a) Since g(x) = τ−xg(0), we only have to prove the inversion formula at x = 0,
ie. that

g(0) =

∫
R
ĝ dm.

In (6.1) choose f(x) = φ(x
λ
), where λ > 0 and φ is the function in lemma 6.18

φ(x) = e−x
2/2. This gives∫

R
g(t)λφ̂(λt) dm(t) =

∫
R
φ
(
y
λ

)
ĝ(y) dm(y).

A change of variables on the left:∫
R
g
(
t
λ

)
φ̂(t) dm(t) =

∫
R
φ
(
y
λ

)
ĝ(y) dm(y).

When λ → ∞, then g
(
t
λ

)
→ 0 and φ

(
y
λ

)
→ φ(0) and Lebesgue dominated conver-

gence gives

g(0)

∫
R
φ̂ dm = φ(0)

∫
R
ĝ dm,

which is what we want, since φ(x) = e−x
2/2.

(b) By (a) the Fourier-transform F : g 7→ ĝ is injective S → S. By the inversion
formula (F ◦F)g (x) = g(−x), so F4 is the identical mapping and therefore F(S) ⊃
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F(F3(S)) = F4(S) = S, so F is surjektive, hence a bijection. Continuity of F was
proven at ??, so the inverse F3 is continuous.

(c) Let

f0(x) =

∫
R
f̂ ex dm.

Inserting this into the equation 6.1 and using Fubinbi once more gives∫
R
f0ĝ dm =

∫
R
fĝ dm.

This is valid for all g ∈ S so for all ĝ ∈ S, in particular for all ĝ ∈ D(R), same as∫
R(f0 − f)ϕdm = 0 to all ϕ ∈ D(R). Therefore f0 = f ae. �

Corollary 6.20. For rapidly decreasing f and g:

a) (fg)ˆ = f̂ ∗̂ ĝ and
b) f ∗̂ g ∈ S.

Todistus. (a) By 6.13 F(f ∗̂ g) = Ff · Fg. Replace f :n and g by Ff and Fg:

(F(f̂ ∗̂ ĝ))(x) = (F2f)(x) · (F2g)(x) = f(−x) · g(−x) = (fg)(−x) = F2(fg)(x).

To (F(f̂ ∗̂ ĝ)) = F2(fg) apply F−1 and you have proven (a). Since obviously fg ∈ S,

S 3 (fg)ˆ = f̂ ∗̂ĝ, so (b) is true, since F is a surjektion S → S. �

Theorem 6.21. (Plancherel and Parseval ) The Fourier-transform F : S → S
has a unique extension to an isometrical isomorphism F : L2(R)→ L2(R).

Proof. Obviously S ⊂ L2(R). We prove, that F : S → S preservs inner products
in Hilbert space L2(R). Let f and g ∈ S. By the inversion formula ( z̄ is the complex
conjugate of z).

(g, f) =

∫
R
ḡf dm =

∫
R
ḡ(x)

( ∫
R
f̂(t)eitx dm(t)

)
dm(x)

=

∫
R
f̂(t)

( ∫
R
ḡ(x)eitx dm(x)

)
dm(t)

=

∫
R
f̂(t)

( ∫
R
g(x)e−itx dm(x)

)
dm(t) = (ĝ, f̂)

=

∫
R
f̂(t)ĝ(t) dm(t) = (ĝ, f̂).

Like in the space L1(R) S is also dense in the space L2(R). The Fourier-transform
is a bijection S → S, soit is an isometric isomorphism from a dense subset of the
metric space L2(R) to a dense subset of the metric space L2(R). Its extension to
completions is obviously isometric, so it preserves inner products also, and w¨we
have proved Parseval’s formula in the space L2(R). �



topological vector space 2010 77

6.4. Fourier-transforms of tempered distributions.

Definition 6.22. The Fourier-transform of a tempered distribution Λ ∈ S∗ is defi-
ned by

〈ϕ, Λ̂〉 = 〈ϕ̂,Λ〉,
in other words, it is the transpose of the Fourier-transform for rapidly decreasing
test functions.

Example 6.23. We have proved in 6.8 that calculus with tempered distributions
goes almost like calculus with functions, for example differentiation and multiplica-
tion by polynomials are possible and are continuous linear mappings S∗ → S∗. The
same is true for tempered distributions: (Some proofs come a little later)

Theorem 6.24. For all Λ ∈ S∗, φ, ψ ∈ S, f ∈ L1(R))

a) Λf̂ = (Λf )ˆ for all f ∈ L1(R), in particular:

b) 1̂ = δ0, δ̂0 = 1

c) The Fourier-transform F : Λ 7→ Λ̂ is a linear homeomorphism S∗ → S∗.
d) F4 is the identical mapping, ie. F−1 = F ◦ F ◦ F .

e) (DΛ)ˆ = itΛ̂ and (xΛ)ˆ = −DΛ̂

f) (Λ̂)ˆ = Λ̃, where 〈ϕ, Λ̃〉 = 〈ϕ̃,Λ〉.(inversion formula)

Todistus. (a) (Λf )ˆ(φ) = Λf (φ̂) =
∫

R fφ̂ =
∫

R f̂φ = (Λf̂ )(φ).

(b) 〈φ, 1〉 =
∫

R φ dm, so 〈φ, 1̂〉 = 〈φ̂, 1〉 =
∫

R φ̂ dm = φ(0) = 〈φ, δ0〉. Toiset
yhtälöt todistetaan correspondingsti.

(c) Follows from the fact that F is the transpose of a linear homeomorphism
(Cf. ??)

(d), (e) and (f) Follow from the definition and that rapidly decreasing functions
enjoy the same property. �

Definition 6.25. The convolution of a tempered distribution and a rapidly decrea-
sing function is defined by

(ϕ ∗ Λ)(x) = 〈τx(ϕ̃),Λ〉,
which extends definition 5.4, which was for compactly supported functions Λ = Λf .

The next lemma is used for differentiation of convolutions of tempered distribu-
tions .The proof uses Fourier transforms.At last some use!

Lemma 6.26. Differentiation is the limit of the classical defining fraction also in
the topology of S ie. for all ϕ ∈ S and x ∈ R:

lim
ε→0

ϕ(x+ ε)− ϕ(x)

ε
−Dϕ(x) = 0

in the topology of S.

Proof. Since the Fourier-transform is a homeomorphism in the topology of S, we
may instead prove that

lim
ε→0
F
(
ϕ(x+ ε)− ϕ(x)

ε
−Dϕ(x)

)
= 0
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same as

lim
ε→0

(∫
R(ϕ(x+ ε)− ϕ(x))e−itx dm(x)

ε
−F(Dϕ)(t)

)
= 0

same as

lim
ε→0

(
eiεt − 1

ε

∫
R
ϕ(x)e−itx dm(x)− itϕ̂(t)

)
= 0

same as

lim
ε→0

(
eiεt − 1

ε
ϕ̂(t)− itϕ̂(t)

)
= 0

same as
eiεt − 1

ε
ϕ̂(t)→ 0.

We know that ϕ̂ ∈ S. For any number k ∈ N and polynomial - in particular for
P (t) = (1 + t2)N , we have

P (t)Dk

(
eiεt − 1

ε
ϕ̂(t)

)
= P (t) ·

(
k∑
j=0

(
k

j

)
Dj

(
eiεt − 1

ε

)
Dk−jϕ̂(t)

)
.

Calculating the derivative gives

Dj

(
eiεt − 1

ε
− it

)
=


eiεt−1
ε
− it, when j = 0

iεeiεt

ε
− i = ieiεt − i, when j = 1

ikεj−1eiεt, when j ≥ 2

so

sup
t∈R
|Dj

(
eiεt − 1

ε
− it

)
| → 0.

Since ϕ ∈ S, then convergence in the topology of S is proven. �

Theorem 6.27. Convolutions and Fourier-transforms of tempered distributions ha-
ve the following properties: (For all Λ ∈ S∗, ϕ, ψ ∈ S, f ∈ L1(R))

a) Λ ∗̂ϕ ∈ C∞(R) and Dn(Λ ∗̂ϕ) = (DnΛ) ∗̂ϕ = Λ ∗̂ (Dnϕ).
b) Λ ∗̂ϕ is a tempered distribution, in fact a polynomially increasing function .
c) (Λ ∗̂ϕ)ˆ = ϕ̂Λ.
d) (Λ ∗̂ϕ) ∗̂ψ = Λ ∗̂ (ϕ ∗̂ψ).

e) Λ̂ ∗̂ ϕ̂ = (ϕΛ)ˆ.

Todistus. (a) Proven just like the corresponding theorem for Schwartzin distribu-
tions 5.6, except that lemma 6.26 is used in the critical stage.42

(b)
No too difficult (?)
THE END ( SOME APPLICATIONS STILL COME)

42Do it! XXX
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Solutions or hints to Exercises
Topological vector spaces 2010

Exercise set 8.

8.5. Let Pn = {f : K → K
∣∣ p is a polynomial of degree at most n − 1 } with its

natural structure as Hausdorff- topological vector space. Let P =
⋃
n∈N Pn = {f :

K→ K
∣∣ p is a polynomial} with the structure of direct inductive limit: P = lim

−→
Pn.

Is P metrizable in this topology?τ? Is P a Montel space?

Solution. The Hausdorff-tvs-topology is unique. We can define it by the norm ‖
∑

n∈N anx
n‖ =∑

n∈N |an|.
Since every Pn on finite dimensiona, it is a Banach space, so P is a LB- space

and therefore a bornological Montel space. (Remenber: TA barreled space where in
which every closed, bounded set is compact, is a Montel space, in particular any
finite dimensional (!) normed (or tvs) space is a bornological Montel space (Heine-
Borel)). Therefore also P is a bornological Montel space, ksince these properties
are inherited by the direct inductive limit space. ??. As a countable union of its
subspaces, P is of Baire 1 category. But it is complete, so it cannot be metrizable
— by Baire’s theorem.

8.6. (continuation to (a)) Introduce another topology on P , call it τ0, whose defining
seminorms are qk(

∑
i∈N λix

i) = |λk|. I such that is topology metrizable ? Or Montel?
Is one of the topologies τ and τ0 finer than the other?

Solution. τ0 is obviously metrizable, since the seminorm family is countable. (+Hausd).
Since the inclusions Pi → P are continuous also in τ0, we conclude that τ is finer
than τ0. Since the topologies are not identical, τ is strictly finer than τ0. �

8.7. Prove that the function spaces DK(Ω) and D(Ω) are Montel.

Solution. Since D(Ω) is a direct indudctive limit of the spaces DK(Ω), it is sufficient
to prove that the spaces DK(Ω) are Montel. As Fréchet-space such that ey are
barreled, so it is sufficient to prove that they satisfy the Heine-Borel-property, ie.
every closed, bounded set is compact. Let H ⊂ DK(Ω) ⊂ C∞(Ω) be closed and
bounded. Let f ∈ H and x1 and x2 ∈ K.

|f(x1)− f(x2)| ≤ ‖Df‖∞|x1 − x2|.

Similarly:

|Dkf(x1)−Dkf(x2)| ≤ ‖Dk+1f‖∞|x1 − x2|.
By Ascoli’s theorem, since R on complete metrizable and K compact metrizable

and H ⊂ C(K,X) = {f : K → X
∣∣ f is continuous}, the following are equivalent:

(1) H is relatively compact ie. H is compact in the sup-norm.
(2) (a) H is equicontinuous.

(b) H(x) ⊂ R is relatiively compact (same as bounded, since we are in
R:ssä) for all x ∈ K.
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Obviously our equation implies (a) and (b), so the closure of the (sup-(!))closed
set H wrt. sup-norm H is compact in the sup-norm. The same construction and
ideas work in the other equation for higher derivatives. It may be difficult to prove
directly that H is compact in its locally convex topology, given by the sup-norms of
derivatives. But since this topology is metrizable, it is sufficient to prove that H is
totally bounded

The topology can be defined by the incresing sequence of norms ‖| · ‖|n = ‖ ·
‖∞ + ‖ · ‖1 + ‖ · ‖2 + · · · + |‖ · ‖n. Let ε > 0. By what we already knoe, H is
included in jsome compact, siis in particular precompact set separately for each
norm ‖f‖n = ‖Dnf‖∞, so for each n ∈ N there exists a finite covering of H by
subsets Hn,i ⊂ H, i = 1, 2, . . .mn such that each Hn,i has diameter (in the ‖ · ‖n-
sense) iat most ε:

‖Dnf −Dng‖n < ε for all f, g ∈ Hn,i.

Now we can construct a finite covering of H by the sets Hn,i ⊂ H, i = 1, 2, . . .mn

such that the diameter of each Hn,i in ‖| · ‖|n-sense is at most ε: The intersections
H0,i0 ∩H1,i1 ∩ · · · ∩Hn,in , form such a covering when the indices ij run through a ll
possible values, ie each ij ∈ {1, . . . ,mj}. (!) �

(There was a shorter proof inthe exercises?)

8.8. Prove that the derivative of a C∞–function f coincides with its distribution-
derivative.(interpreted correctly).

Solution. Easy.

8.9. Prove that in the distribution derivaative sense

d

dx
log |x| = v.p.

1

x
.

Notation v.p. (value principale) means Cauchy principal value for integral. Define

v.p.

∫ ∞
∞

f = lim
ε→0+

(∫ −ε
∞

f +

∫ ∞
ε

f

)
As a distribution v.p.f neans the linear form

D → R : ϕ 7→ 〈ϕ, v.p.f〉 = v.p

∫ ∞
∞

fϕ.
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Solution. By the definition of distribution derivative, 〈D log |x|, ϕ〉 = −〈log |x|, Dϕ〉.
Since log |x| is locally integrable in the set R43, so the right hand side can be in-
terpreted as a distribution by −

∫∞
−∞ log |x| Dϕdx and we arrive at:

〈D log |x|, ϕ〉 = −
∫ ∞
−∞

log |x| Dϕdx

= lim
ε→0

(
−
∫ −ε
−∞

log |x| Dϕdx−
∫ ∞
ε

log |x| Dϕdx
)

= lim
ε→0+

(∫ −ε
−∞

ϕ(x)

x
dx−

∣∣∣−ε
−∞

log |x| ϕ(x) +

∫ ∞
ε

ϕ(x)

x
dx−

∣∣∣∞
ε

log |x| ϕ(x)

)
= v.p.

∫ −ε
−∞

ϕ(x)

x
dx− lim

ε→0+

(∣∣∣−ε
−∞

log |x| ϕ(x)−
∣∣∣∞
ε

log |x| ϕ(x)

)
= v.p.

∫ −ε
−∞

ϕ(x)

x
dx− lim

ε→0+

(
log(ε) (ϕ(−ε)− ϕ(ε))

)
= v.p.

∫ −ε
−∞

ϕ(x)

x
dx.

8.10. Let E be a Fréchet-spaces and F = lim
→
Fn a LF–space. Let T : E → F

be a continuous linear mapping. Prove that there exists a number k ∈ N such that
T (E) ⊂ Fk.

Solution. (This was also improved in the exx but I have not yet written the better
proof. Here is the longer one:)

Let Hn = {(x, Tx) ∈ E × F
∣∣ Ty ∈ Fn}. They are closed subspacdes in the

products of 2 Fréchet-spaces so they are Fréchet-spaces. Let πn : Hn → F : (x, y) 7→
x be the projections. Since

⋃
n Fn = F , we have

⋃
nHn = T so by Baire some

closed set Hn has an interior point. The mapping π2 : Gr(T ) → F : (x, y) 7→ y is
a continuous linear mapping betwween Fréchet–spaces, so it is open . It maps int
points to int points in the complete set Hn ⊂ T π2(Hn), but this is a subspoace, so
it must be all of F . But π2(Hn) ⊂ Fn.

43R+,
∫

log x = −x+ x log x is even continuous, since limx→0(−x+ x log x) = 0.
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Exercise set 9.

9.11. Assume f ∈ C∞(R) and Λ ∈ D(R). Prove or disprove:

D(fΛ) = Df Λ + f DΛ.

Solution. The derivative of the istribution Λ ∈ D∗. is DΛ := −Λ ◦D, ie.

〈ϕ,DΛ〉 := −〈Dϕ,Λ〉 ∀ϕ ∈ D(Ω).

So we calculate:

〈ϕ,D(fΛ)〉 = −〈Dϕ, fΛ〉
= −〈fDϕ,Λ〉
= −〈D(fϕ)− (Df)ϕ,Λ〉
= −〈D(fϕ),Λ〉+ 〈ϕ(Df),Λ〉
= 〈fϕ,DΛ〉+ 〈ϕ, (Df)Λ〉
= 〈ϕ, fDΛ〉+ 〈ϕ, (Df)Λ〉 = 〈ϕ,Df Λ + f DΛ〉.

9.12. The space D(R)∗ has the weak topology σ(D(R)∗,D(R)). Assume that (fn)N →
f is convergent sequence in the Fréchet space C∞(R) (Seminorms sup-norms of de-
rivatives in compact sets) and the sequence (Λn)N → Λ is convergent in the distri-
bution space D(R)∗.Prove that (fnΛn)N → fΛ is a convergent sequence in the space
D(R)∗.

Solution. Since Λn → Λ, for all ϕ ∈ D(R)

〈ϕ,Λn〉 → 0.

Since fn → f , for all k ∈ N and compact K ⊂ R

sup
K
|Dkf | → 0.

The product of a distribution and a function is defined like in exercise (1).We have
to prove that for all ϕ ∈ D(R)

〈ϕ, fnΛn〉 = 〈fnϕ,Λn〉 → 0.

Since fn 7→ fnϕ is continuous C∞(R)→ D(R), we have fnϕ→ fϕ ∈ D(R).
The bilinear mapping

C∞(R)×D(R)∗ → C : (f,Λ) 7→ 〈ϕ, fΛ〉 = 〈fϕ,Λ〉

is continuous for each variablke separately. The next lemma prove such that at this
implies sequential continuitu in the product topology – and this is continuity, since
the space is metrizable.

Lemma 9.28. (For exercise 9.2 Let B : E × F → R be a bilinear mapping; E and
F Fréchet-spaces. (Sufficient: E is Fréchet.) The following are equivalent.

a) B is (sequentially) continuous (in the product topology) (at the origin).
b) B is (separately) continuous (at the origin).
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Proof. Obviously a) =⇒ b) Assume b), and consider a sequence (xn, yn)→ 0 ∈
E × F in other words xn → 0 ∈ E and yn → 0 ∈ F. We prove, that B(xn, yn) →
0 ∈ R.

Let U ∈ UR.
For fixed x ∈ E, the sequence B(x, yn) ⊂ R is convergent, so bounded. Every

mapping x 7→ B(x, yn) is continuous, so {x 7→ B(x, yn)
∣∣ n ∈ N} is a pointwise

bounded family of continuous linear mappings. By the principle of uniform boun-
dedness such a family is family is equicontinuous, so there exists neighbourhood of
the origin W ∈ UE such that B(x, yn) ∈ U for every n ∈ N and x ∈ W . Choose a
nU ∈ N such that n ≥ nU =⇒ xn ∈ W . Now B(xn, yn) ∈ U . �

9.13. Let Λ ∈ D(R)∗ be a distribution. Assume

W =
⋃
{ω

open
⊂ Ω

∣∣ 〈f,Λ〉 = 0, When supp f ⊂ ω}.

Prove that 〈f,Λ〉 = 0, when supp f ⊂ W . (Hint: Partitions of unity.)

Solution. {ω
open
⊂ Ω

∣∣ 〈f,Λ〉 = 0, When supp f ⊂ ω} = (ωi)i∈I is a family of open
sets and ωi ⊂ R and W =

⋃
i∈I ωi. By 9.6. (Partitions of unity) there exists a

sequence of functions (ψn)n∈N such that

a) ∀n ∈ N∃i ∈ I such that suppψn ⊂ ωi.
b)
∑

n∈N ψn = 1 in the set W .
c) To each compact K ⊂ W there exists an open A ⊃ K and a number m ∈ N

such that
∑m

n=1 ψn = 1 in the set A.

Let f ∈ D(R) and K = supp f ⊂ W . Since K is compact, c) can be applied. We
may assume that A ⊂ W . (Intersect with W if needed.)

f = f · 1 =
m∑
n=1

ψnf

in the set A, and outside A f =
∑m

n=1 ψnf , namely 0. Therefore

〈f,Λ〉 =
m∑
n=1

〈ψnf,Λ〉.

But every 〈ψnf,Λ〉 is 0, since suppψnf ⊂ suppψn ⊂ ωi for some i ∈ I. �

9.14. Let Λ ∈ D(R)∗ be a distribution. Prove that

a) If ϕ ∈ D(Ω) and suppϕ ∩ supp Λ = ∅, then 〈ϕ,Λ〉 = 0.
b) If ψ ∈ C∞(Ω) and ψ(x) = 1 in some open set A ⊃ supp Λ, then Λψ = Λ.

Solution. a) By definition, supp Λ = R \W , where

W =
⋃
{ω

open
⊂ Ω

∣∣ 〈f,Λ〉 = 0, when supp f ⊂ ω}.

So if suppϕ ∩ supp Λ = ∅, then supp f ⊂ W , so by the previous exercise 〈f,Λ〉 = 0
b) Let ψ ∈ C∞(Ω) and ψ(x) = 1 in some openA ⊃ supp Λ. We prove that Λψ−Λ = 0.
Since ψ(x) = 1 in A ⊃ supp Λ, then for all ϕ ∈ D(Ω) and x ∈ A is

ϕ(x)− (ψϕ)(x) = ϕ(x)− (1ϕ)(x) = 0.
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Therefore supp(ϕ− ψϕ) ∩ supp Λ = ∅. So by a)

〈ϕ− ψϕ,Λ〉 = 0 eli

〈ϕ,Λ〉 = 〈ψϕ,Λ〉 = 〈ϕ, ψΛ〉 for all ϕ ∈ D(Ω).

�

9.15. Let ϕ ∈ D(R) and let KB(0, r) be a 0–centered compact interval. Assume that
Dkϕ(0) = 0 for all k = 0, 1, . . . , N and ‖DNϕ

∣∣
K
‖∞ ≤ η. Prove that for all k ≤ N

and x ∈ K
|Dkϕ(x)| ≤ η|x|N−k.

Solution. K = [−r, r], ie. x ∈ K ⇐⇒ |x| ≤ r. Assumption: Dkϕ(0) = 0 for all
k = 0, 1, . . . , N and ‖DNϕ

∣∣
K
‖∞ ≤ η.

Induction:
I) (n = 0): ‖DNϕ

∣∣
K
‖∞ ≤ η gives for all x ∈ K: |DN−0ϕ(x)| ≤ η|x|N−(N−0).

II) Induction assumption: for all x ∈ K: |DN−kϕ(x)| ≤ η|x|N−(N−k).
Induction claim: for all x ∈ K: |DN−k−1ϕ(x)| ≤ η|x|N−(N−k−1). (kunnes k = N)
Step: when 0 < x < r, then — since Dkϕ(0) = 0 for all k = 0, 1, . . . , N —

|DN−k−1ϕ(x)| = |
∫ x

0

DN−kϕ(t) dt|

≤
∫ x

0

|DN−kϕ(t)| dt

≤
∫ x

0

η|t|N−(N−k) dt

= η

∫ x

0

tk dt = η 1
k
xk+1

Similarly for negative.

9.16. (Partitions of unity!) Let (ωi)i∈I be a family of open sets and ωi ⊂ R and
Ω =

⋃
i∈I ωi. There exists a sequence (!) of functions (ψn)n∈N such that

a) ∀n ∈ N∃i ∈ I such that suppψn ⊂ ωi.
b)
∑

n∈N ψn = 1 in Ω.
c) To each compact K ⊂ Ω there exists an open A ⊃ K and a number m ∈ N

such that
∑m

n=1 ψn = 1 in A.

Solution. Classical real analysis construction. Very nice! Look in books or search the
the net.
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Exercise set 10.

10.17. Let (Λn)N ⊂ D(Ω)∗ be a sequence of distributions such that for all ϕ ∈ D(Ω)
there exists the limit

〈ϕ,Λ〉 = lim
n→∞
〈ϕ,Λn〉 ∈ C.

Prove using Banach and Steinhaus uniform boudedness that Λ ∈ D(Ω)∗ and DkΛn →
DkΛ in the standard topology of D(Ω)∗, which you should remember. It is ....

Solution. ...the weak topology w∗ = σ(D(Ω)∗,D(Ω)).
(a) Λ is obviously linear. Tarkastetaan its continuity: Let K ⊂ Ω be compact. Consi-
der the family of mappings (Λn

∣∣
K

)N ⊂ DK(Ω)∗. It is pointwise bounded, since atg

each point ϕ ∈ DK(Ω) the set {〈ϕ,Λn〉
∣∣ n ∈ N} is a convergent sequence in R, hence

bounded. Since DK(Ω) is a Fréchet-space, the family is by Banach and Steinhaus
equicontinuous: To each neighbourhood B(0, r) ∈ UC there exists a neighbourhood
Ur ∈ UDK(Ω) such that for all n ∈ N

〈Ur,Λn〉 ⊂ B(0, r)

so for all ϕ ∈ Ur:
|〈ϕ,Λ〉| = lim

n→∞
|〈ϕ,Λn〉| ≤ r

The restrictions of Λ to the spaces DK(Ω) are all continuous, so Λ ∈ D(Ω)∗.

(b) By the assumption 〈ϕ,Λ〉 = limn→∞〈ϕ,Λn〉 ∈ C at least Λn → Λ in the standard
topolgy of D(Ω)∗.

For all ϕ ∈ D(Ω), by the definitionof distribution derivative

〈ϕ,DkΛn〉 = (−1)k〈Dkϕ,Λn〉 → (−1)k〈Dkϕ,Λ〉 = 〈ϕ,DkΛ〉,

same as DkΛn → DkΛ in the standard topolgy of D(Ω)∗. (You could also use conti-
nuity of differentiation which is proved similarly)

10.18. Is 〈ϕ,Λ〉 = 0 =⇒ ϕΛ = 0, valid for ϕ ∈ D(Ω) and Λ ∈ D(Ω)∗?

Solution. ϕΛ = 0 means by the definition of the productϕΛ, that 〈ψϕ,Λ〉 = 〈ψ, ϕΛ〉 =
0 for all ψ ∈ D(Ω).

Slect (Use approximative unity!) functions ψn ∈ D(Ω) such that ψnϕ→ ϕ in the
space D(Ω). Then 0 = 〈ψnϕ,Λ〉 → 〈ϕ,Λ〉, so ϕ,Λ〉 = 0.

The other directionis — of course — false. A counterexample: Λ = Λg with g = 1
on [−1, 1] and 0 elsewhere, and ϕ = ψ is x on [−1, 1] elsewhere 0.

10.19. Express Dirac’s delta eksplicitely as a higher — as low as possible – deriva-
tive of a continuous function.

Solution. easy. cf. later exx.
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10.20. ( Convolution of functions). The convolution of 2 functions u, v : R→ C
is defined as

(u ∗ v)(x) =

∫
R
u(t)v(x− t) dt,

when the right hand side Lebesgue–integral exists. Prove that if we denote by τx(v)
the function v shifted by x: τx(v)(t) = v(t− x), and we denote by ṽ:lla the function
v reflected ṽ(t) = v(−t), then

(u ∗ v)(x) = 〈τx(ṽ),Λu〉.
Solution. EASY! �.

10.21. Convolution has many nice properties like

(1) In general u ∗ v is as”smooth” as the more smooth one of u and v.
(2) u ∗ v is bilinear.
(3) u ∗ v = v ∗ u.
(4) (u ∗ v) ∗ w == v ∗ (u ∗ w).
(5) yms.
(6) . . .
(7) Fourier–transform turn convolutions to products: F(uv) = Fu ∗ Fv.

Find more nice results – or prove some of these.

Solution. Nice animations can be found in the net — already in Wikipedia and
MathWorld.

10.22. In probability theory, discuss the distribution(!) of the sum of 2 ”continuous”
independent random variables. How about ”discrete variables? Or one ”discrete” and
one ”continuous”?

10.23. (The convolution of a distribution and a function). Assume ψ ∈
D(R) and that Λ is a compactly supported distribution and x ∈ R. Prove that if
supp Λ ∩ (x− suppψ) = ∅, then (Λ ∗ ψ)(x) = 0.

Solution. Easy �

10.24. Consider Heaviside step function H(x) =

{
0, forx ≤ 0

1, for x > 0.

Its derivative in the classical sense is ae. 0, but its distribution derivative is δ0.
Prove that for all ϕ ∈ D(R):

a) (H ∗ ϕ)(x) =
∫ x
−∞ ϕ(t) dt

b) Dδ0 ∗H = δ0.
c) Λ1 ∗ H = 0.(UUPPSmaybewrong) (Here 1 is the constant function 1 and

1 = Λ1 the corresponding distribution. )
d) There exist distributions Λa,Λb and Λc ∈ D(R)∗, such that

(Λa ∗ Λb) ∗ Λc 6= Λa ∗ (Λb ∗ Λc).

Solution. Not written yet. Easy? Check for errors.
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Exercise set 11.

11.25. a) Is ex a temperede distribution? b) How about ex cos(ex)? c) Are You in
coflict with Hahn and Banach?)

Solution. At least n
∫

R ϕ(x)ex dx is not defined for all rapidly decreasing functions ϕ.

Counterexample ϕ(x) = e−|x|/2. But i such that is the full answer to the question? If
Λ = ex were a tempered distribution, then it would be a Schwartzin distribution [??]
and 〈ϕ,Λ〉 =

∫
R ϕ(x)ex dx at least for all ϕ ∈ D(R). I such that ere an extension of

this to S? SinceD(R) is dense in S, we only have to check continuituy in the topology
of S-. We will prive discontinuity of D(R)→ K : 〈ϕ,Λ〉 =

∫
R ϕ(x)ex dx in the topolo-

gy induced by S. Choose some ψn ∈ D(R), such that 0 ≤ ψ ≤ 1, suppψ ∈ [−2n, 2n]
and ψ = 1 on [−n, n]. Now ψn(x)e−|x|/2 → e−|x|/2 in S, in particular (ψn(x)e−|x|/2)N
is a Cauchy- sequence in the subspace topology. But (〈ψn(x)e−|x|/2,Λ〉)N is not con-
vergent:

〈ψn(x)e−|x|/2,Λ〉 =

∫
R
ψn(x)e−|x|/2 · ex dx→∞,

jso Λ is not convergent in that topology.
b) Easy: yes!
c) Not at all. Different topologies! �

11.26. Why are the following tempered distributions:

a) Consider
b) positive Borel-mesures µ, such that there exists k ∈ N such that:∫

R

dµ(x)

(1 + |x|2)k
<∞

c) meassruable functions g, such that there exists p ∈ [1,∞[ and N > 0 such
that ∫

R

(
g(x)

(1 + |x|2)N

)p
<∞

d) polynomials.

Solution. (a) Let K = supp Λ be compact. Choose ψ ∈ D(R) with value 1 in an
open set saa arvon 1 avoimessa U ⊃ K. let

〈f, Λ̃〉 = 〈fψ,Λ〉.

If fi → 0 in the topology of S, then fiψ → 0 in the topology of D(R), so Λ̃ ∈ S∗.
Nut for all ϕ ∈ D(R) we know 〈f, Λ̃〉 = 〈f,Λ〉. �

(b) Let µ be a Borel-measure and k ∈ N such that
∫

R
dµ(x)

(1+|x|2)k
<∞. Prove that

f 7→
∫

R f dµ is continuous in the topology of S. consider a sequence fj → 0 in the

topology of S, so on particular ‖(1 + |x|2)kfj(x)‖∞ → 0. Now

|〈fj, µ〉| = |
∫

R
fj(x) dµ| = |

∫
R

(1 + |x|2)k

(1 + |x|2)k
fj(x) dµ| ≤ ‖(1 + |x|2)kfj(x)‖∞︸ ︷︷ ︸

→0

∫
R

dµ(x)

(1 + |x|2)k︸ ︷︷ ︸
<∞

.
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(c) Here 〈ϕ,Λg〉 =
∫

R ϕg dx. The case p = 1 is a aspecial case of (b). If p ∈]1,∞[,

then remeber Hölder’s inequality : ”If p > 1 ja q > 1 such that 1
p

+ 1
q

= 1, and f ∈ Lp
ja g ∈ Lq, then

|
∫

R
fg dµ| ≤

(∫
X

|f |p dµ
) 1

p
(∫

R
|g|q dµ

) 1
q

.′′

Divide the integrand to factors, use Hölder and remebr tha aim:, |〈ϕ,Λg〉| ≤ C‖Dkϕ(x)(1+
|x|2)N‖∞ for some N, k ja C.

|〈ϕ,Λg〉| = |
∫

R
ϕg dx|

= |
∫

R
ϕ(x)(1 + |x|2)N

g(x)

(1 + |x|2)N
dx|

≤
(∫

R

∣∣ϕ(x)(1 + |x|2)N
∣∣q dx) 1

q

·
(∫

R

(
|g(x)|

(1 + |x|2)N

)p
dx

) 1
p

︸ ︷︷ ︸
=C=vakio

≤ C

(∫
R

∣∣ϕ(x)(1 + |x|2)N
∣∣q dx) 1

q

= C

(∫
R

∣∣ϕ(x)(1 + |x|2)M · (1 + |x|2)N−M
∣∣q dx) 1

q

≤ C‖ϕ(x)(1 + |x|2)M‖∞ ·
(∫

R

∣∣(1 + |x|2)
∣∣(N−M)q

dx

) 1
q

︸ ︷︷ ︸
constant<∞ kun M large enough

.

(d) A special case of (c). �

11.27. Prove that the derivative of a tempered distribution is a tempered distribu-
tion.

Solution.
〈f,DΛ〉 = −〈Df,Λ〉

and a) of the next exercise. �

11.28. The following linear mappings are continuous S → S:

(1) Differentiation
(2) Multiplication by a polynomial.
(3) Multiplication by a rapidly dectreasing function.

Hint: A corollary of the closed graph theorem: A linear mapping T : E → F between
Fréchet-spaces is continuous if and only if for all (xn)N ⊂ E

(xn, Txn)→ (0, y) =⇒ y = 0.

Solution. Let ϕ ∈ S.

(1) Differentiation: Claim ‖Dk(Dϕ)(x)(1+ |x|2)N‖∞ ≤ C‖Dk′ϕ(x)(1+ |x|2)N
′‖∞

for some N, k ja C. Yes! Choose C = 1, k′ = k + 1 ja N ′ = N .
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(2) Almost by definition: ϕ ∈ S ⇐⇒ ‖P (x)Dkϕ(x)‖∞ <∞ for all polynomials
P and k ∈ N, so ϕ ∈ S =⇒ Dϕ ∈ S. Use the hint: Let (ϕn)N ⊂ S such
that ϕn → 0 and P · ϕn → ψ ∈ S. Claim: ψ = 0.

The assumption mean such that at‖Q1(x) ·Dkϕn(x)‖∞ → 0 for all poly-
nomials Q1 and numbers k ∈ N and ‖Q2 · Dk(P · (ϕn − ψ))‖∞ → 0 for all
polynomials Q2 and numbers k ∈ N. The differentiation formula for products
(Leibnitz) gives

‖Q2 ·
k∑
j=0

(DjP )(Dk−j(ϕn − ψ))‖∞ → 0

eli

‖
k∑
j=0

((Q2 ·DjP ) ·Dk−jϕn −Q2 ·Djψ))‖∞ → 0.

since Q2 ·DjP is a polynomial, every‖(Q2 ·DjP ) ·Dk−jϕn‖∞ → 0, so ....(fill
in!)— ψ = 0.

(3) Similar.

11.29. The Fourier- transformation of L1(R)−functions has the following proper-
ties: for all f, g ∈ L1(R) ja x, t ∈ R:

a) F is linear

b) (τxf)ˆ = e−xf̂

c) (exf)ˆ = τ−xf̂

d) (f ∗̂ g)ˆ = f̂ ĝ

e) (f
λ
)ˆ(t) = λf̂(λt), kun λ > 0.

Todistus. (a) is obvious.

(b) (τxf)ˆ(t) =

∫
R
(τxf)e−t dm =

∫
R
fτ−xe−t dm =

∫
R
fe−t(x)e−t dm = e−x(t)f̂(t).

(c) (exf)ˆ(t) =

∫
R
(exf)e−t dm =

∫
R
fe−(t−x) dm = τ−x(t)f̂(t).

Prove (d) and (e).

Solution. (d) Fubini . (e) A linear change of variables. �

11.30. Solve one exercise from Rudin’s book ”Functional Analysis” Chapter 7.

11.31. Solve one more exercise from Rudin’s book ”Functional Analysis” Chapter 7
(or 8).


