GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE

KAREN E. SMITH

32. Representations of the group $SL_2(\mathbb{R})$

Example 32.1. Recall

$$SL_2(\mathbb{R}) = \left\{ A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \middle| \det A = xw - yz = 1 \right\} \text{ and}$$
$$sl_2(\mathbb{R}) = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| \operatorname{Tr} A = a + d = 0 \right\}$$

We have (in the exercises) already found the following irreducible representations for $SL_2(\mathbb{R})$:

- (1) The trivial representation; one-dimensional,
- (2) The tautological representation; one-dimensional,
- (3) The symmetric powers of the above $Sym^d(\mathbb{R}^2)$, where $d = 2, 3, \ldots$

we will prove that there ore no other irreducible representations. This is far from obvious. The idea of the proof is to use the fact that a representation of a Lie group is irreducible (if and) only if its derivative is irreducible as a lie algebra representation. We will prove that the lie algebra $sl_2(\mathbb{R})$ has no other irreducible representations except the derivatives of the group representations listed above. In fact we will classify the irreducible representations of the corresponding complex lie algebra $sl_2(\mathbb{C})$.

Proposition 32.2. The derivative of an irreducible finite dimensional representation ρ of a Lie group G, at the neutral element, is an irreducible representation of the group's lie algebra $d_e\rho: \mathcal{G} \to gl(V)$.¹

CORRECT THE FINNISH TEXT!

¹Irreducibility of ρ and irreducibility of its derivative are in fact equivalent, but we will need only this half of the statement here.

KAREN E. SMITH

Todistus. Let $\rho : G \to GL(V)$ be an irreducible representation of the lie group G. If $d_e \rho : \mathcal{G} \to gl(V)$ were reducible, it would have a proper nonzero sub-representation i.e. a proper nonzero subspace W, invariant under actions of elements in \mathcal{G} .

One can show² that W is a subrepresentation of ρ also which is impossible. \Box

The next task b is to find the derivatives of the group representations listed above. For brevity, we denote the tautological representation of $SL_2(\mathbb{R})$ by $Sym^1(\mathbb{R}^2)$ and the trivial representation by $Sym^0(\mathbb{R}^2)$. The standard basi vectors of \mathbb{R}^2 are $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so the basis vectors of the symmetric product $Sym^d(\mathbb{R}^2)$ are $e_1^d, e_1^{d-1}e_2, e_1^{d-2}e_2^2, \ldots, e_1e_2^{d-1}$ and e_2^d , and the matrix $A \in SL_2(\mathbb{R})$ acts on the basis vector $e_1^{d-i}e_2^i$ by

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} (e_1^{d-i} e_2^i) = (Ae_1)^{d-i} (Ae_2)^i = (xe_1 + ze_2)^{d-i} (ye_1 + we_2)^i.$$

The derivative of this is found by repeatedly using the formula for the derivative of a bilinear mapping, and we arrive at the following lemma:

Lemma 32.3. Let V and W be representations of the Lie group G.

(a) Let $V \otimes W$ be their tensor product, i.e. $g(v \otimes w) = gv \otimes gw$ for all $g \in G, v \in V, w \in W$. Taking the derivative at the neutral element gives the corresponding lie algebra representation

$$X(v \otimes v) = Xv \otimes w + v \otimes Xv,$$

where each X is the derivative of the corresponding Lie group representation.

(b) Let $Sym^d(V)$ be a symmetric power of the representation V. Taking the derivative at the neutral element gives the corresponding lie algebra representation

$$X(e_1^{a_1} \cdot e_2^{a_2} \dots e_d^{a_d}) = \sum_{k=1}^d a_k \, e_1^{a_1} \cdot e_2^{a_2} \dots e_k^{a_k-1} \dots e_d^{a_d} \cdot Xe_k,$$

where possible symbols e_i^0 stand for nothing.

²Find a proof!

Todistus. (a) is a consequence of the bilinear mapping derivation formula. Väite (b) follows from (a) and a simple factor space argument. \Box

Next we use the lemma to determine the derivative of the second symmetric power of the tautological representation of $GL_2(\mathbb{R})$. The lie algebra $sl_2(\mathbb{R})$ has the generators $X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and as a vector space it has a basis $\{X, Y, H\}$, where $H = [X, Y] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. The representation $Sym^2(\mathbb{R}^2)$ of $sl_2(\mathbb{R})$ is determined by the action of these basis vectors on the basis vectors of the representation space $Sym^2(\mathbb{R}^2)$. (In fact it would be sufficient to consider the action of the generators X and Y, but it turns out to be easier to take all three.) The basis vectors of $Sym^2(\mathbb{R}^2)$ are e_1^2 , $e_1 \cdot e_2$ and e_2^2 . Let us calculate the actions by the previous lemma ??.

$$X(e_1^2) = 2e_1 \cdot Xe_1 = 2e_1 \cdot 0 = 0$$

$$X(e_1^2) = Xe_1 \cdot e_2 + e_1 \cdot Xe_2 = 0 \cdot e_2 + e_1 \cdot e_1 = e_1^2$$

$$X(e_2^2) = 2e_2 \cdot Xe_2 = 2e_2 \cdot e_1 = 2e_1 \cdot e_2.$$

Expressing the images of the basis vectors in the basis gives the matrices of the action of X;

$$Mat(Sym^{2}(X)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Vastaavasti lasketaan

$$Mat(Sym^{2}(Y)) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$

The action of the third basis vector H of the lie algebra $sl : 2(\mathbb{R})$ is the classical bracket of these actions o X and Y, but instead of calculating it by matrix algebra we can find out its action directly, which turns out to be useful in the later generalisation to higher powers; we can in fact calculate $Sym^d(H)$ for higher powers right now: The effect of H on any basis vector of the symmetric power is

$$\begin{aligned} H(e_1^{d-i}e_2^i) &= (d-i)e_1^{d-i-1}e_2^iHe_1 + ie_1^{d-i}e_2^{i-1}He_2 \\ &= (d-i)e_1^{d-i-1}e_2^ie_1 - ie_1^{d-i}e_2^{i-1}e_2 \\ &= (d-i)e_1^{d-i}e_2^i - ie_1^{d-i}e_2^i \\ &= (d-2i)e_1^{d-i}e_2^i. \end{aligned}$$

In particular, for d = 2 we have

$$Mat(Sym^{2}(H)) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix},$$

a diagonal matrix. From the calculation above it is obvious that $Mat(Sym^d(H))$ will be diagonal in the above basis for any d. Also, it is clear that its diagonal elements form a finite arithmetic sequence with difference 2, like this: $d_{11} = d, d - 2, d - 4, \ldots, d_{dd}$.

Lemma 32.4. The basis element $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ of $sl_2(\mathbb{R})$ acts diagonally not only in the in the tautological representation and its symmetric powers but in all other irreducible³ representations as well.

Todistus. To be added later, ???

Remark 32.5. It is a fact that all so called semi-simple lie algebras \mathcal{G} (like $sl_n(\mathbb{R})$) have the following property: If any element $X \in \mathcal{G}$ acts diagonally in the tautological representation, then it will act diagonally in all other representations as well.

To prove that we have found all irreducible representations of $SL_2(\mathbb{R})$, we now only have to prove that there are no other irreducible lie algebra representations of $sl_2(\mathbb{R})$ except the symmetric powers studied above.

By algebraic completeness of the field \mathbb{C} it is easier to study complex than real lie algebras. therefore we find it useful to *complexify* $SL_2(\mathbb{R})$ by the following construction:

Remark 32.6. Let V be a representation of the lie algebra $sl_2(\mathbb{R})$. Then "the same vector space with complex coefficients", $V \otimes \mathbb{C}$ is a representation of the corresponding complex lie algebra $sl_2(\mathbb{R}) \otimes \mathbb{C}$. (Take the same matrices!).

If W is a sub-representation of a representation V of the lie algebra $sl_2(\mathbb{R})^4$, then $W \otimes \mathbb{C}$ is a complex sub-representation of the representation $V \otimes \mathbb{C}$ of the complex lie algebra $sl_2(\mathbb{R}) \otimes \mathbb{C}$. In particular, if $V \otimes \mathbb{C}$ is irreducible, then also the original representation V is irreducible.⁵

4

 $^{3^{\}circ}$

⁴This works for any lie algebra, in my opinion.

⁵The converse is false: We have constructed an irreducible representation, whose complexification was reducible.

So for proving that we have found all irreducible representations of $sl_2(\mathbb{R})$, it is enough to prove that their complexifications are the only irreducible representations of the complex lie algebra $sl_2(\mathbb{R}) \otimes \mathbb{C}^6$. This is the next theorem.

Theorem 32.7. The only finite dimensional irreducible representations of the lie algebra $sl_2(\mathbb{C})$ are the symmetric powers $Sym^d(\mathbb{C}^2)$ of the tautological representation.

Todistus. The matrices of the symmetric powers are the same for corresponding real and complex representations, i.e. the ones studied above.

Let us consider any finite dimensional (irr?) representation V of the lie algebra $sl_2(\mathbb{C})$. In the tautological representation, the lie algebra $sl_2(\mathbb{C})$ is generated, even spanned by the matrices $X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Since we expect H to act diagonally, let us consider it first. By the ⁷Lemma??, the action is diagonal , so V splits into a finite direct sum $V = \bigoplus_{\alpha \in \mathbb{C}} V_{\alpha}$, where H acts as multiplication by α in each subspace H_{α} kertomisena luvulla α . This is expressed by calling V_{α} the eigenspace of H with eigenvalue α .

Next find the action of X in each V_{α} . We will prove that $Xv \in V_{\alpha+2}$ for $v \in V_{\alpha}$. Verifying this relies on a clever idea: Let $v \in V_{\alpha}$, so $Hv = \alpha v$.

$$HXv = [H, X]v + XHv,$$

but in the group $GL_2(\mathbb{R})$ we have

$$[H, X] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 2X,$$

so [H, X] = 2X also holds for the representation matrices, in particular

$$HXv = [H, X]v + XHv = 2Xv + X\alpha v = (2 + \alpha)Xv.$$

Therefore $Xv \in V_{\alpha+2}$.

Similarly $Y: V_{\alpha} \to V_{\alpha-2}$. These observations have significant consequences:

⁶which is the same as $sl_2(\mathbb{C})$

⁷UNPROVED!

Let $\alpha_0 \in \mathbb{C}$ be an eigenvalue of H, so $V_{\alpha_0} \neq \{0\}$. Then the direct sum

$$\oplus_{m\in\mathbb{Z}}V_{\alpha_0+2m}\subset V$$

is a sub-representation of V, since both generators of the lie algebra $sl_2(\mathbb{R})$, X and Y map it onto itself. But by assumption the representation is irreducible, and $V_{\alpha_0} \neq \{0\}$. therefore

$$\oplus_{m\in\mathbb{Z}}V_{\alpha_0+2m}=V$$

since V was assumed finite dimensional, every eigenspace V_{α_0+2m} of H is finite dimensional and only finite many are non zero. This means

$$V = V_{\lambda} \oplus V_{\lambda+2} \oplus \cdots \oplus V_{\lambda+2n}.$$

since the representation matrices are invertible, all $V_{\lambda}, V_{\lambda+2}, \ldots, V_{\lambda+2n} = V_{\mu}$ are n.⁸

Let $v \in V_{\mu}$. Then $\langle v, Yv, Y^v, \ldots, Y^n v \rangle = V$, since also this is an invariant subspace of the invariant representation, since both Y and H map it onto itself, and also X does the same, since

$$X(Y^{p}v) = p(\mu - p + 1)(Y^{p-1}v),$$

which can be proved by induction:

Initial case p=0: Observe that $XY^p v = XY^0 v = Xv = 0$, since we assumed $v \in V_{\mu}$. So the laim is true for p = 0.

Induction step: Assume

$$XY^{p-1}v = (p-1)(\mu - (p-2))Y^{p-2}v.$$

Use $Y: V_{\alpha} \to V_{\alpha-2}$ to calculate:

$$\begin{split} XY^{p}v &= XYY^{p-1}v \\ &= [X,Y]Y^{p-1}v + (XY - [X,Y])Y^{p-1}v \\ &= [X,Y]Y^{p-1}v + (YX)Y^{p-1}v \\ &= [X,Y]Y^{p-1}v + YXY^{p-1}v \\ &= HY^{p-1}v + Y(p-1)(\mu - (p-2))Y^{p-2}v \\ &= (\mu - 2(p-1))Y^{p-1}v + (p-1)(\mu - (p-2))Y^{p-1}v \\ &= ((\mu - 2(p-1)) + (p-1)(\mu - (p-2)))Y^{p-1}v \\ &= (\mu p - p^{2} + p + 0)Y^{p-1}v \\ &= p(\mu - p + 1)Y^{p-1}v, \end{split}$$

6

⁸By the same argument $V_{\lambda+2m} \neq \{0\}$, where $m \in \mathbb{Z}$. Contradiction! What is wrong??

which is what is needed for the induction step.

The result $\langle v, Yv, Y^v, \dots, Y^n v \rangle = V$ implies that the spaces V_{α} are one dimensional.

By choosing
$$p = (\frac{1}{2}(\mu - \lambda) + 1)$$
 we get $Y^{p-1}v \in V_{\lambda}$, so $Y^{p}v = 0$ and
 $0 = X(0) = X(Y^{p}v) = p(\mu - p + 1)(Y^{p-1}v),$

from which it follows that $(\mu - p + 1) = 0$ same as $0 = (\mu - \frac{1}{2}(\mu - \lambda) - 1 + 1) = \frac{1}{2}(\mu + \lambda)$, toisin sanoen $\lambda = -\mu$, so V is a sum of one dimensional eigenspaces of H:

$$V = V_{-\mu} \oplus V_{-\mu+2} \oplus \cdots \oplus V_{\mu-2} \oplus V_{\mu}.$$

In particular, all eigenvalues are even or all odd depending of whether 0 is an eigenvalue or not.

What we have found out, proves that the representation appears in the original list. This is what we wanted to prove.

Terminology remark: The eigenvalues H are called the *weights* of their eigenvectors. The number $\mu \in \mathbb{N}$ is the largest weight of the representation in question.⁹

⁹What is its connection to the dimension of the corresponding symmetric power?