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22. Infinite Groups

Example 22.1. Many, in fact most well known and important groups
are infinite:

(1) The group of translations (Rn,+)
(2) The group of invertible linear mappings GL(Rn) ∼ GLn(R) =
{invertible n× n−matrices} with matrix multiplication.

(3) The group of volume and orientation preserving invertible li-
near mappings SL(Rn) ∼ SLn(R) = {n × n−matrices with
determinant 1}.

(4) The group of length, angle and orientation preserving inver-
tible linear mappings also called orhtogonaal linear mappings
O(Rn) ∼ SOn(R) = {n× n−matrices with orthogonal columns
or, equivalently, rows and determinant 1} SO(Rn) ∼ SOn(R)

(5) The Lorentz group SO3,1(R), of invertible linear mappings pre-
serving a given Minkowski product.

(6) The group of complex invertible linear mappings GL(Cn) ∼ GLn(R) =
{invertible complex n× n−matrices}.

(7) The group of unitary linear mappings U(Cn) ∼ Un(C) = {complex
n× n−matrices preserving a Hermitian inner product}={ n×
n−matrices with orthogonal columns or, equivalently, rows}

(8) SU(Cn) ∼ SUn(C) = {orientation preserving mappings in U(Cn)
(9) A special case: U(C) = U(1) = {λ ∈ C

∣∣ |λ| = 1} ∼{rotations
in the plane}.

(10) Products and many factor groups of the afore mentioned.

Remark 22.2. All these act by definition in sope set, most act linearly
in a finite dimensional vector space, so they have tautological represen-
tations. It is a nontrivial task to find (all) other representations. We
will find some. It is not quite evident how one could generalize the
theory of finite groups, as the infinite groups are very large, all of the
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above are uncountable and most even lacking countable sets of gene-
rators. (Cf. ??, where generators of GLn(R) are given). Fortunately,
these groups carry other structure beside the group multiplication, all
are topological spaces, and even better, smooth manifolds. Their group
operations are smooth as well. Such groups are called Lie groups

23. Smooth manifolds and Lie groups

Remark 23.1. INTRODUCTION: (((( Jo aluksi voi hahmotella, mistä
is kysymys. manifold is tavallisen smoothn pinnan yleistys, yleensä mo-
niulotteinen — siitä nimi. manifold is siis joukko, usein jonkin korkeau-
lotteisen euklideisen avaruuden Rn:n subset, jonka jokaisessa pisteessä
is olemassa tangenttiavaruus, tangenttitason luonnollinen yleistys. Mo-
nistolla is sileitä käyriä and muita sileitä alimonistoja sekä ennen kaik-
kea monistolta is sileitä funktioita luvuille eli koordinaatteja sekä sileitä
kuvauksia muille monistoille and itselleen. Monistolla voi siten harras-
taa differentiaalilaskentaa ja, jos se is samalla mitta-avaruus, myös in-
tegraalilaskentaa.

Lie group is samalla group and smooth manifold, jossa laskutoimi-
tus is differentioituva kuvaus, jolloin käy niin, että vasemmalta kerto-
minen ryhmän alkiolla is diffeomorphism ryhmältä itselleen. Erityisesti
jokaiseen pisteeseen piirretyt tangenttiavaruudet osoittautuvat täysin
samanlaisiksi and voidaan siis samaistaa neutraalialkion kohdalle piir-
rettyyn tangenttiavaruuteen, joka is nimeltään ryhmän lie algebra. and
”algebra” se onkin, sillä siinä is vektoriavaruuden rakenteen lisäksi
myös eräänlainen kertolaskutoimitus, jota usein merkitään hakasulkein
[ ].

Lien ryhmien esitysteorian pääidea is suunnilleen seuraava: Lien ryhmän
esityksestä saadaan luonnollisella tavalla sen ”Lien algebran esitys”, jo-
ka is matemaattisesti paremmin hallittavissa oleva käsite, koska lie al-
gebra is reaalinen vector space, joka kannattaa vielä täydentää komplek-
siseksi vektoriavaruudeksi, koska täydellisessä kunnassa C is helpompi
laskea kuin R:ssä. Syntyvien ns. puoliyksinkertaisten Lien algebroiden
esitykset is mahdollista luokitella and niistä saa rekonstruoitua alun
perin etsityt reaaliset and edelleen Lien ryhmän esitykset. Tämä is oh-
jelmamme periaatteessa, pitkälti myös käytännössä. ))))

Remark 23.2. The theory of representations of finite groups can also
be generalized using another idea, Haar measure, which is a translation
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invariant measure is a group.

µ(U) = µ(gU) ∀U ⊂ G, g ∈ G.

In particular, all compact topological groups carry a finite Haar measu-
re, with µ(G) = 1. This makes it easy to imitate the finite group theory,
in particular the theory of characters, by replacing averages 1

|G|
∑

g∈G
by the corresponding integrals

∫
G
dµ. Unfortunately, only few interes-

ting groups are compact, of the afore mentioned only O(Rn), SO(Rn),
U(Cn) and SU(Cn). Infinite Haar measure is the other groups makes
their theory much more complicated.

23.1. Topology.

Definition 23.3. The concepts of Topological space and its topology
are considered well-known.

Remark 23.4. Well known examples of topological spaces and conti-
nuous mappings((((( Esimerkkejä topologioista:

(1) triviaali topologia where tahansa joukossa,
(2) diskreetti topologia where tahansa joukossa,
(3) kofiniittinen topologia where tahansa joukossa,
(4) euklidinen topologia Rn:ssä,
(5) Zariskin topologia Rn:ssä (Zariskin topologiassa suljettuja ovat

polynomien nollajoukot and niiden leikkauset),
(6) aliavaruustopologia topologisen avaruuden osajoukossa,
(7) tulotopologia topologisten avaruuksien tulojoukossa.

Remark 23.5. Topologinen avaruus is topologisten avaruuksien katego-
rian objekti. Kertamme joitakin tähän aihepiiriin liittyviä määritelmiä:

- Topologisten avaruuksien kategorian mielessä samoja eli isomorfi-
sia ovat topologiset avaruudet, joiden välillä is bijection , joka kuvaa
avoimet joukot avoimiksi joukoiksi, kuten myös sen käänteiskuvaus, siis
topologian säilyttävä bijection .

- Topologisten avaruuksien kategorian morphism is jatkuva kuvaus,
ts. kuvaus, jossa openten joukkojen alkukuvat ovat avoimia.

- open kuvaus is kuvaus, jossa openten joukkojen kuvat ovat avoimia.
Huomataan, että jatkuva kuvaus ei yleensä ole open edes tavallisessa
topologiassa R→ R, vastaesimerkkinä x→ x2. Myöskään open kuvaus
ei yleensä ole jatkuva eikä jatkuva open kuvaus ole yleensä bijection .



4 KAREN E. SMITH

- Homeomorphism is kumpaankin suuntaan jatkuva bijection eli jat-
kuva and samalla open bijection . Tämä is sama asia kuin isomorphism!

- Topologian kanta eli virittäjistö is joukko avoimia joukkoja, ”kan-
tajoukkoja” jolla is se ominaisuus, että jokainen open joukko voidan
lausua yhdisteenä kantajoukoista. Esimerkkinä avoimet pallot tavalli-
sessa euklidisessa topologiassa.

- Kahden topologisen avaruuden tulo is niiden karteesinen tulo varus-
tettuna topologialla, jonka kantana ovat alkuperäisten openten joukko-
jen tulot. Esimerkkinä tulotopologiasta olkoon R2:n euklidinen topolo-
gia avaruuksien R ja R topologioiden tulotopologiana.

- Hausdorff- avaruus is topologinen avaruus, joka toteuttaa toisen
numeroituvuusehdon T2, eli jossa kahdella eri pisteellä is aina erilliset
avoimet ympäristöt. Esimerkiksi tavallinen euklidinen topologia and
diskreetti topologia. Vastaesimerkkejä ovat äärettömän joukon triviaali
topologia and kofiniittinen topologia sekä Rn:n Zariskin topologia, kun
n ≥ 2. ))))))

23.2. Smooth mappings in Euclidean space and classical ma-
nifolds.

Definition 23.6. Let U ⊂ Rm and V ⊂ Rn be open sets. Call f : U →
V smooth, if at every u ∈ U all partial derivatives of any order exist.
From differential calculus we know that such functions have derivatives
Notation: write C∞(U, V ).

Remark 23.7. Smoothness is a ”local property” in the following sense:
f : U → V obviously is smooth if and only if its every restriction to an
open subset of U . It is sufficient to consider restrictions to some open
cover.

Locality is expressed by saying that the smooth functions form a
function sheaf. Similarly ”sheaves” are formed by continuous functions,
C ∗ 1-functions, real analytic functions, holomorphic (component-wise
complex analytic) functions, even rational functions etc. They all can
be used to construct their own kinds of ”manifolds”.

Manifolds have two historical definitions, the older by Riemann. In
the 1930:s Hassler Whitney proved their equivalence. In the classical
definition, the manifold is a topological subspace of Rn inheriting also
the differential structure from there. In the more abstract definition, the
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manifold is any topological space, equipped with an ”atlas of charts”
with smooth transition maps. Whitney’s theorem allows to embed any
abstract d-dimensional manifold in R2n+1.

We begin by extending the definition of smooth mapping from open
sets to any subsets in Rn.

Definition 23.8. Let U ⊂ Rm and V ⊂ Rn be arbitrary subsets. A
mapping f : U → V is called smooth, if it is the restriction of some
smooth map to the set U , i.e. there exist open Ũ ⊂ Rm and Ṽ ⊂ Rn

and a smooth mapping f̃ : Ũ → Ṽ such, that U ⊂ Ũ , V ⊂ Ṽ and
f(u) = f̃(u) for all u ∈ U . The set of all smooth functions f : U → V
is a vector space C∞(U, V ).

Definition 23.9. Let U ⊂ Rm and V ⊂ Rn be arbitrary subsets. the
mapping f : U → V is as diffeomorphism, if it is bijective and both
f : U → V and f−1 : V → U are smooth.

Remark 23.10. Diffeomorphisms are of course homeomorphisms, so dif-
feomorphic sets can be identified as topological spaces.

Remark 23.11. Diffeomorpism is an equivalence relation.

Remark 23.12. In the definitions above , m and n need not coincide.
This is in particular true for diffeomorphisms, but it is well known that
there exists no diffeomorphism between sets of different dimension. In
the definitions above, m and n need not coincide since f and its inverse
f−1 are only defined between the sets U and V whereas the extensions
used f̃ and (f−1)∼ to test for smoothness need not be inverse to each
other.

Example 23.13. Diffeomorfism:

(1) The unit circle in the plane R2 is diffeomorphic to any circle
in the plane, in space or anywhere: R3. Also the circle is diffeo-
morphic to an ellipse or any loop, knotted or not.

(2) A square and a circle are not diffeomorphic.
(3) A square and a rectangle are diffeomorphic.
(4) A square and a quadrilateral are diffeomorphic.
(5) A sphere and a circle are not even homeomorphic.
(6) A sphere and a torus are not even homeomorphic..
(7) There exists a smooth bijection from the square to the circle

but its inverse is not smooth.
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Kuva 1: Ympyrä and solmu ovat diffeomorfiset

Download ”Differential Topology” by Guillemin and and
Pollack for free! Download our favourite book at Pdfdataba-
se.com. pdfdatabase.com/differential-topology-guillemin-pollack.html
. There are other addresses as well. Also solutions to exercises
are available after googleing a bit.

Definition 23.14. A subsetX ⊂ Rm is a (classical, smooth, d−dimensional)
manifold, same as locally diffeomorphic to Euclidean spaceRn , if X
has an open cover {Uλ}λ∈Λ, s.th. every Uλ is diffeomorphic to an open
Bλ ⊂ Rd.

The open cover sets Uλ , together with the corresponding diffeomorp-
hisms are called charts, the sets Bλ pages, the chart maps ϕλ : Uλ → Bλ

local co-ordinate systems and their inverses ϕ−1
λ : Bλ → Uλ local para-

metrisations.

!

!

! "

Kuva 2: Ellipsoidi is klassinen monisto

Remark 23.15. In the above definition one can take the Bλ ⊂ Rd to be
open spheres, generalised rectangles or elements of any other basis of
the Euclidean topology.

23.3. Abstract manifolds.
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Definition 23.16. SA topological space X is an abstract (smooth,
d−dimensional) manifold and {ϕλ}Λ is its atlas, if X has an open
covering {Uλ}λ∈Λ, such that every Uλ is homeomorphic ϕ : Uλ → Bλ

to some open Bλ ⊂ Rd such, that :

(1) X is Hausdorff
(2) the topology of X has a countable basis.
(3) If Uλ and Uµ intersect, then the change of co-ordinates

ϕµ ◦ ϕ−1
λ : ϕλ(Uλ ∩ Uµ)→ ϕµ(Uλ ∩ Uµ)

is a diffeomorphism.

Kuva 3: Ellipsoidi is abstract monisto

Remark 23.17 (Motivation). ((( Määritelmän idea on, että pitää joten-
kin pystyä määrittelemään, mitä voitaisiin tarkoittaa smoothllä funk-
tiolla joukossa X. Topologia ei anna luontevaa tapaa. Kartasto antaa.
is luonnollista pitää kuvausta f : X → R smoothnä, jos jokainen

f ◦ ϕ−1
λ : Bλ → R

is smooth. Määritelmän kohta (3) takaa, että tämä ei riipu kartan va-
linnasta.

Remark 23.18. Määritelmässä olisi tietenkin riittänyt vaatia, että jokai-
nen kartanvaihto is smooth funktio, ovathan niiden käänteiskuvaukset
itsekin kartanvaihtoja. )))))))))

Remark 23.19. An open subset of an abstract manifold obviously is a
manifold with restrictions of the original charts.

In particular an open A ⊂ Rn is an n-dim manifold and the obvious
atlas consists of the embedding U = A→ B = A ⊂ Rn.

Remark 23.20. Any classical manifold is obviously an an abstract mani-
fold. The inverse holds by Whitney’s theorem. WE WILL USE BOTH
DEFINITIONS.
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Definition 23.21. Let X be an abstract manifold and U an open
subset. A function f : U → R is smooth in U ,if it is smooth is every
chart, i.e.. every composed map

f ◦ ϕ−1
λ : Bλ ∩ ϕλ(U)→ R

is smooth.

f is smooth at the point x ∈ X, if it is smooth in some neighbourhood
of x.

Kuva 4: smooth funktio abstraktilla monistolla

Remark 23.22. To prove that a function f : U → R is smooth at x one
only has to check it for one chart containing x.

f : U → R is smooth, if and only if f is smooth in every point
x ∈ U . So smoothness is a local property, and smooth functions form
a function sheaf.

Definition 23.23. Let X and Y be two abstract manifolds. A mapping
f : X → Y is smooth, if it is smooth on each chart on both sides i.e.. if
every composed map

Bλ

ϕ−1
λ→ Uλ

f→ f(Uλ) ∩ Vµ
ψµ→ Bµ ⊂ Rn

is smooth where it is defined , i.e.. in ϕ−1
λ (Uλ ∩ f−1(Vµ)), where the

Y -chart is denoted {ψµ : Vµ → Bµ}µ∈M .

f is smooth at x ∈ X, if it is smooth in some neighbourhood of x.

Remark 23.24. smooth manifolds form a category (((((( muodosta-
vat kategorian, jossa objekteina ovat monistot and morfismeina niiden
väliset smootht kuvaukset. Isomorfismeja ovat monistojen väliset dif-
feomorphismt eli kumpaankin suuntaan smootht bijection t. Nämä ovat
tietenkin homeomorfismeja, ovathan smootht kuvaukset selvästikin jat-
kuvia. ))))))
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Kuva 5: smooth kuvaus 2-ulotteiselta monistolta X 3-ulotteiselle monistolle Y

23.4. Lie groups.

Definition 23.25. A topological group is a group G, which is also a
topological space and where both the group operation ◦ : G×G→ G
and taking inverses G→ G : g 7→ g−1 are continuous. Here the product
set G×G carries the product topology.

Definition 23.26. A Lie group1 is a group G, which is also a smooth
manifold, and where both the group operation ◦ : G × G → G and
taking inverses G→ G : g 7→ g−1 are continuous. Here the product set
G × G carries the structure of a product manifold to be defined soon
at??.

Example 23.27. All the infinite groups listed in the beginning are Lie
groups, in fact classical ones i.e. embedded in Euclidean space. Let us
check some of these statements:

GL2(R) =

{[
x y
z w

]∣∣∣∣xw − yz 6= 0

}
is open in R4 so GL2(R) is 4-

dim manifold with chart = id.

1Sophus Lie 1842 - 1899, Norwegian.
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SL2(R) =

{[
x y
z w

]∣∣∣∣xw − yz = 1

}
is a closed set in Euclidean space

R4. Let us check directly by definition that it is a manifold. Choose:

Ux =

{[
x y
z w

]∣∣∣∣xw − yz = 1, x 6= 0

}
Uy =

{[
x y
z w

]∣∣∣∣xw − yz = 1, y 6= 0

}
Uz =

{[
x y
z w

]∣∣∣∣xw − yz = 1, z 6= 0

}
Uw =

{[
x y
z w

]∣∣∣∣xw − yz = 1, w 6= 0

}
And choose chart maps

ϕx : Ux → Bx = {(x, y, z) ∈ R3
∣∣ x 6= 0} :

[
x y
z w

]
7→ (x, y, z),

ϕy : Uy → By = {(x, y, w) ∈ R3
∣∣ y 6= 0} :

[
x y
z w

]
7→ (x, y, w),

ϕz : Uz → Bz = {(x, z, w) ∈ R3
∣∣ z 6= 0} :

[
x y
z w

]
7→ (x, z, w),

ϕw : Uw → Bw = {(y, z, w) ∈ R3
∣∣ w 6= 0} :

[
x y
z w

]
7→ (y, z, w),

such, that the deleted co-ordinate can always be calculated from the
others by xw − yz = 1, which gives local parametrizations:

ϕ−1
x : Bx → Ux : (x, y, z) 7→

[
x y
z yz+1

x

]
,

ϕ−1
y : By → Uy : (x, y, w) 7→

[
x y

xw−1
y

w

]
,

ϕ−1
z : Bz → Uz : (x, z, w) 7→

[
x xw−1

z
z w

]
,

ϕ−1
w : Bw → Uw : (y, z, w) 7→

[
yz+1
w

y
z w

]
.

All these are obviously smooth, so diffeomorfisms. By the classical def.,
SL2(R) is a smooth 3-dim manifold.

To learn it, let us calculate the coordinate transition functions also:

Ux ∩ Uy =

{[
x y
z w

]∣∣∣∣xw − yz = 1, x 6= 0, y 6= 0

}
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ϕx(Ux ∩ Uy) = {(x, y, z) ∈ R3
∣∣ x 6= 0, y 6= 0} ⊂ Bx

ϕy ◦ ϕ−1
x : ϕy(Ux ∩ Uy)

ϕ−1
x→ Ux ∩ Uy

ϕy→ ϕy(Ux ∩ Uy) ⊂ By :

(x, y, z) 7→
[
x y
z yz+1

x

]
7→ (x, y,

yz + 1

x
).

This is a smooth bijection. The other 7 are similar.

In a similar fashion, SL2(C) =

{[
x y
z w

]
∈ C2×2

∣∣∣∣xw − yz = 1

}
is a

complex manifold, since rational functions are holomorphic.

The other Lie groups will be considered later or in the exercises.

(Finite sets can be considered 0-dimensional manifolds!)

24. Tangent spaces and tangent mappings

The idea of a tangent space: Let ψ(x) = ψ(x1, . . . , xd) be a point in a
classical manifold M ⊂ Rn. Here ψ : B → X is a local parametrisation.
Since a local parametrisation is smooth, it has a derivative at x =
(x1, . . . , xd) ∈ B ⊂ Rd. This derivative is a linear mapping L = dxψ :
Rd → Rn giving a close approximation to y 7→ ψ(y) in a neighbourhood
of x. So its image set, the ”plane” ψ(x) + L(Rd) is locally a good
approximation to ψ(B), which is a piece of the manifold M .

Instead of the ”geometrically intuitive” tangent space, we will - for
notational simplicity, consider the subspace parallel to it and call the
subspace L(Rd) the tangent space to M at ψ(x).

24.1. The derivative of a smooth function. The formal defini-
tion for a derivative can be found in any textbook.

The derivative is a linear mapping its matrix in any basis, often the
standard basis of Rn, is its Jacobian matrix consisting of its partial
(same as directional!) derivatives

dbf (h) = lim
t→0

f(b+ th)− f(b)

t
in the well known way.
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We will occasionally use some of the following terminology. A marked
smooth manifold (M,x0) is smooth manifold, with a distinguished point
x0 ∈M . A morphism of marked manifolds f : (M,x0)→ (N, y0) same
as a smooth mapping between marked manifolds (M,x0) and (N, y0)
is a smooth map M → N mapping x0 7→ y0.

The tangent space TxM of a smooth marked manifold (M,x0) will
be defined so that it will have the following properties:

To every morphism of marked manifolds

f : (M,x0)→ (N, y0)

there is a linear mapping

Tx0f : (M,x0)→ (N, y0)

and this correspondence is a functor, i.e.

Tx0(f ◦ g) = Tg(x0)f ◦ Tx0g,

whenever the composed morphism f ◦ g is defined at x0. The tangent
mapping same as derivative of f : (M,x) → (N, y) is this linear
mapping Tx0f : (M,x0)→ (N, y0). [[[something is still missing: maybe
we should say that the tangent mapping is the derivative whenever
the derivative is already defined. note: this was no definition, just a
prologue?]]]]

Definition 24.1. Consider a point x0 = ψ(x) = ψ(x1, . . . , xd), in a
d-dimensional manifold M ⊂ Rn where ψ : B → X is local parametri-
sation. Since a local parametrisation is smooth, it has a derivative at
x = (x1, . . . , xd) ∈ B ⊂ Rd. The tangent space of the manifold M at
x0 = ψ(x) is the image space Tx0(M) = dxψ(Rd).

Definition 24.2. . Consider a smooth mapping between marked ma-
nifolds: f : (M,x) → (N, y) and a local paramterisations at the mar-
ked points ψ : B → U , and assume b 7→ x and ϕ : U ′ → B′, where
y 7→ b′ ∈ B′ and : M ⊂ Rn, B ⊂ Rd, N ⊂ Rn, B′ ⊂ Rd′ .

The tangent mapping same as derivative of the mapping f is the
derivative

db(ϕ ◦ f ◦ ψ) : Rd → Rd′ .

Remark 24.3. The definition above is not complete: One has to prove
existence and uniqueness ei independence of the choice of charts. Let
us do it. Before doing the general case, let us consider an example:
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Kuva 7: Ellipsoidin tangenttitaso

Example 24.4. Consider the particular manifold M = SL2(R) at

x0 = I =

[
1 0
0 1

]
∈ R4. Use the local parametrization

ψx = ϕ−1
x : Bx → Ux : (x, y, z) 7→

[
x y
z yz+1

x

]
= (x, y, z,

yz + 1

x
) ∈ R4.

Calculate the partial derivatives at (1, 0, 0) = ϕx

([
1 0
0 1

])
and find the

Jacobi matrix Mat d(1,0,0)ψx
∂x
∂x

∂x
∂y

∂x
∂z

∂y
∂x

∂y
∂y

∂y
∂z

∂z
∂x

∂z
∂y

∂z
∂z

∂ yz+1
x

∂x

∂ yz+1
x

∂y

∂ yz+1
x

∂z


∣∣∣∣∣∣∣∣∣
(1,0,0)

=


1 0 0
0 1 0
0 0 1

−yz+1
x2

z
x

y
x


∣∣∣∣∣∣∣∣
(1,0,0)

=


1 0 0
0 1 0
0 0 1
−1 0 0

 .
The image set of the linear mapping is the tangent space. So the tangent
space is spanned by the columns:

〈(1, 0, 0,−1), (0, 1, 0, 0), (0, 0, 1, 0)〉 ⊂ R4 = R2×2

eli

TISL2(R) =

{[
x y
z −x

]∣∣∣∣x, y, z ∈ R
}

=

{[
x y
z w

]∣∣∣∣ Tr [z y
z w

]
= 0

}
.
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Similarly ⊂ R4, for instance by the parametrization

ψw = ϕ−1
w : Bw → Uw : (y, z, w) 7→

[
yz+1
w

y
z w

]
one finds at (y, z, w) = (0, 0, 1) derivative

z
w

y
w
−1+w

w2

1 0 0
0 1 0
0 0 1


∣∣∣∣∣∣∣∣
(0,0,1)

=


0 0 −1
1 0 0
0 1 0
0 0 1

 ,
from where one finds the tangent space to be

TISL2(R) =

{[
−w y
z w

]∣∣∣∣ y, z, w ∈ R
}

=

{[
x y
z w

]∣∣∣∣ Tr [z y
z w

]
= 0

}
,

which is the same set that was found by the first parametrization. .

In fact it is intuitively clear why both parametrizations should give
the same tangent space. The charts ϕi and their inverses, the local
prametrizations ϕ−1

i = ψi form a commutative diagram

R3 ⊃ Bx ⊃ ϕx(Ux ∩ Uw)
ψx−→ Ux ∩ Uw

η = ϕw ◦ ψx ↓ · ↓ I
R3 ⊃ Bw ⊃ ϕw(Ux ∩ Uw)

ψw−→ Ux ∩ Uw

The chart transition map η = ϕw◦ψx is diffeomorphism, and η(1, 0, 0) =

ϕw

([
1 0
0 1

])
= (0, 0, 1). The maps in the diagram are smooth. By

taking derivatives we get the diagram

R3
d(1,0,0)ψx−→ R4

d(1,0,0)η = d(1,0,0)(ϕw ◦ ψx) ↓ · ↓ identical mapping

R3
d(0,0,1)ψw−→ R4

Here one observes immediately d(0,0,1)ψw(R3) ⊂ d(1,0,0)ψx(R3). ”=”
follows from symmetry or from the fact that the transition map η is a
diffeomorphism, so its derivative is bijective.

Theorem 24.5. The tangent space of a manifold at a given point does
not depend on the choice of local coordinatization.
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Todistus. Given above!!! �

Remark 24.6. Remember, a Lie group is a group and a manifold, where
the mappings G × G → G : (x, y) 7→ xy and x 7→ x−1 are smooth.
Here the product set carries both the product group structure and
the product manifold structure, the latter having products and product
mappings of the original charts as charts.

Definition 24.7. A Lie group map also called a homomorpism (of
Lie groups) is a smooth group homomorphism, similarly a Lie group
isomorphism is a smooth isomorphism between Lie groups and whose
inverse is also smooth.

Remark 24.8. Compositions of Lie group maps are Lie group maps, so
Lie groups form a category.

Example 24.9. (1) G = (R,+) is Lie group, since R × R → R :
(x, y) 7→ x+ y and R→ R : x 7→ −x are smooth.

(2) The rotation group / circle S1 is a Lie group, when it is identified
with the circle as a manifold:

{(x, y) ∈ R2
∣∣ x2 + y2 = 1} = {(cos 2πα, sin 2πα)

∣∣ α ∈ R},

which leads to identifying its group multiplication with

(cos 2πα, sin 2πα) ◦ (cos 2πβ, sin 2πβ) = (cos 2π(α + β), sin 2π(α + β))

and choosing for local parametrizations at (cos 2πα, sin 2πα) the smooth
mappings

ψ :]α− ε, α + ε[→ S1

θ 7→ (cos 2πθ, sin 2πθ).

Check smoothness of group operations in S1:

]α− ε, α + ε[×]β − ε, β + ε[
ψ×ψ′−→ S1 × S1 ◦→ S1 ϕ−→]α + β − 2ε, α + β + 2ε[

(θ, θ′)
ψ×ψ′7→ ((cos 2πθ, sin 2πθ), (cos 2πθ′, sin 2πθ′))

◦7→
◦7→ (cos 2π(θ + θ′), sin 2π(θ + θ′))

ϕ7→ θ + θ′.

Remark 24.10. Notice: Above we also got an example of group map:

ι : (R,+)→ S1 : θ 7→ (cos 2πθ, sin 2πθ)

is clearly a group homomorphism and we just proved it to be smooth
also. It is not injective, hence no isomorphism.
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Example 24.11. More Lie group maps:

(1) Since SO(n) ⊂ SL(n) ⊂ GL(n), and all have usual matrix mul-
tiplication as the group operation and all carry the classical manifold
structure inherited from R2n, so the inclusion mappings SO(n)→ SL(n
and SL(n)→ GL(n) are Lie group maps.

(2) The circle group S1 consists of rotations of the plane, also in the
following sense:

S1 → SOR(2) : (cos 2πθ, sin 2πθ) 7→
[
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

]
is a Lie group isomorphism. Here the matrix group is a classical mani-
fold in R4.

Also the group U(1) = {z ∈ C
∣∣ |z| = 1} ⊂ C with complex number

multiplication and the manifold structure coming from the identifica-
tion C = R2 is isomorphic to S1. Details left as exercise.

Let us calculate the tangent space of ι : (R,+) → S1at the neutral
element — using only the definition.

ι : (R,+)
ι−→ S1 :

θ
ι7→ (cos 2πθ, sin 2πθ)

0
ι7→ (1, 0)

d0ι : R = T0R
d0ι−→ T(1,0)S

1 = {0} × R ⊂ R2

t
d0ι7→
[
∂
∂θ

cos 2πθ
∂
∂θ

sin 2πθ

]
θ=0

[t] =

[
0

2π

]
[t] =

[
0

2πt

]
.

Kuva 8: Ympyrän S1 tangenttiavaruus kohdassa 1 = ι(0)
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25. Representations of Lie groups

Remark 25.1. In the following ”vector spaces” will be finite dimensio-
nal, real — unless otherwise stated..

Definition 25.2. A representation of a Lie group G is a representation
of the group G in a vector space V ( a group homomorphism G →
GL(V )) , also a smooth mapping. Ie A Lie group representation is the
same thing as a lie group mapping ρ : G→ GL(V ).

Example 25.3. (1) If course , the Lie groups which already by de-
finition consist of linear mappings together with composition (matrix
multiplication), like GL(n), O(n), SL(n) etc. have a tautological repre-
sentation, which is just the identical mapping of the group.

(2) The group of invertible numbers (R∗, ·) has many representations,
already in dimension 2 i.e.. in R2:

(1) multiplication by the number itself: λ 7→
[
λ 0
0 λ

]
∈ GL(2)

(2) multiplication by the square of number itself:: λ 7→
[
λ2 0
0 λ2

]
∈

GL(2)

(3) Generalisations of the above: λ 7→
[
λm 0
0 λn

]
∈ GL(2); (m,n ∈

Z)

(4) Action of λ ∈ R∗ as by multiplication with ‖λ‖. : λ 7→
[
|λ|α 0

0 |λ|β
]

All these are reducible, in fact already ”reduced”. The group is abe-
lian. The irreducible representations of the abelian group mentioned
above are one dimensional. Exercise: are there any higher dimensional
irreducible representations?

26. Linear and multilinear algebra

26.1. Bilinear mappings.

Definition 26.1. Let V, W and U be vector spaces and Ftheir coef-
ficient field. A mapping B : V × W → U is called bilinear, if both
partial mappings

B(v, ·) : W → U : w 7→ B(v, w)
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and

B(·, w) : V → U : v 7→ B(v, w)

are linear. Examples:

Example 26.2. Almost all mappings called ”products” in linear al-
gebra are in fact bilinear:

(1) multiplication in R xy
(2) multiplication in C zz′

(3) multiplication of vectors by numbers λv
(4) inner product of vectors (v|w)
(5) matrix multiplication AB,
(6) in particular multiplication of vectors by matrices Ax
(7) evaluation of linear mappings at points Tv,
(8) in particular evaluation of linear forms < v|u′〉
(9) point-wise product of functions fg

(10) tensor product of vectors x⊗ y
(11) tensor product of linear mappings T ⊗ S

26.2. Tensor product of 2 vector spaces.

Definition 26.3. A subset of a vector space K ⊂ V is free (same
as its elements are linearly independent, if the only way to express 0
as a linear combination of the vectors is the trivial combination 0 =∑n

j=1 0vj, vj ∈ K, n ∈ N.

A subset of a vector space K ⊂ V spans the space V , if every vector
v ∈ V is the linear combination v =

∑n
j=1 λjvj; vj ∈ K, n ∈ N of some

vectors in K.

A (Hamel) basis of a vector space V is a free set K ⊂ V ,spanning
V .

Remark 26.4. A set K ⊂ V is a basis of V if and only if every vector
v ∈ V can be expressed as a linear combination v =

∑n
j=1 λjvj, where

λj ∈ F, vj ∈ K, n ∈ N, in exactly one way.

Liner combinations v =
∑n

j=1 λjvj, where λj ∈ F, vj ∈ K, n ∈ N,
are often denoted in short hand: v =

∑
K λkk, where — of course —

only finite many λk are distinct of 0.

All bases of the same vector space have the same cardinality. A vector
space is d-dimensional when it has a basis with d elements. The axiom of
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choice implies that every vector space has a basis — generally infinite,
of course.

A linear mapping is uniquely defined by the images of the basis ele-
ments, and the se images can be any vectors. In particular, in the finite
dimensional case, representing linear mappings by matrices is based on
this fact. Similarly, a bilinear mapping B : V ×W → U is complete-
ly determined by the values B(k, l), where k goes through a basis of
K of V and a basis L of W . This is so, since B (

∑
K λkk,

∑
L µll) =∑

K×L λkµlkl.

Definition 26.5. The The free vector space spanned by set K is a
vector space F(K) whose basis is K.

Remark 26.6. The free vector space spanned by K is unique up to
isomorphism. Also, it exists: Every set K spans some vector space,
since a vector space with basis K can be constructed as follows: FK =
{f
∣∣ f is a function K → F}. Obviously FK is a vector space. Define

F(K) = F(K) = {f ∈ FK
∣∣ f(k) 6= 0 for only finitely many k ∈ K}.

Finally, identify K with the subset K ⊂ F(K) by identifying the element
l ∈ K with the mapping k 7→ δlk, where δkl=1, if k = l and 0 else. In
this notation, every f ∈ V is a finite sum2 f =

∑
k∈K λkk, where

λk = f(k).

All in all every vector space is a free vector space and every set is
the basis of some vector space.3

Remark 26.7. Next we define the tensor product of two vector spaces
V and W as consisting of a space V ⊗ W and a bilinear mapping

V ×W ⊗→ V ⊗W . There exist several commonly used definitions for the
tensor product, preferences depending on intended use. The following
will be either included in the definition or proven as theorems:

(1) The tensor product of two vector spaces V and W is the most
general i.e. universal bilinear mapping in V ×V in the following sense:
Each bilinear B : V ×W → U can be factored as B = L ◦ ⊗, where

2only finitely many terms 6= 0!
3If the coefficient field of the vector space is replaced by just a ring(!), we arrive

at the concept of a module. A free module is defined much like a free vector space.
It turns out that not every module is free.
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L : V ⊗W → U is a bilinear mapping depending uniquely (!) on B.

V ×W ⊗−→ V ⊗W
B

↘ ↓ L
U

We will have to prove to existence and uniqueness of such a bilinear
mapping ⊗.

(2) The tensor product of two vector spaces V = F(K) and W = F(L)

is the free vector space V ⊗W = F(K) ⊗ F(L) = F(K×L) equipped with
the bilinear mapping

V ×W ⊗→ V ⊗W,
mapping the pair of basis vectors (k, l) is mapped to the basis vector
(k, l) ∈ V ⊗W = F(K×L). In particular dim(V ⊗W ) = dimV · dimW .
The basis vectors in the tensor product are usually denoted by⊗(k, l) =
k ⊗ l . Therefore, the elements of the tensor product V ⊗W generally
are finite sums of the form ∑

(k,l)∈K×L

λk,l k ⊗ l

and the bilinear mapping ⊗ : V ×W → V ⊗W is

(
∑
k∈K

λk k)⊗ (
∑
l∈L

µl l) =
∑

(k,l)∈K×L

λkµl k ⊗ l.

Bilinearity is expressed by:

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w
λ · (v ⊗ w) = (λ · v)⊗ w

v ⊗ (w + w′) = v ⊗ w + v ⊗ w′

λ · (v ⊗ w) = v ⊗ (λ · w)

for all v, v′, ∈ V, w,w′ ∈ W, λ ∈ F.

These properties might not make it evident that the tensor product
⊗ : V × W → V ⊗ W is unique up to isomorphism, in particular
independent of the choice of a basis. 4

The following definition of tensor product includes an explicit con-
struction without referring to any basis. This definition also generalises
to outer and symmetric products of spaces

4Also, definitions should generally be ” coordinate free” to avoid such questions
as well as the questions of existence of basis, which was solved above.
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Definition 26.8. let V and W be vector spaces with coefficients in
a field F. look at the vector space 〈V ×W 〉, with basis V ×W . Here
the vectors are finite linear combinations of the basis vectors (v, w) ∈
〈V ×W 〉. The idea is to identify, in 〈V ×W 〉, for instance ((λv), w), to
λ(v, w) and (v + v′, w) to (v, w) + (v′, w). this is done by introducing
a suitable factor space: Let R ⊂ V × W be the smallest subspace
containing the following vectors: v, v′ ∈ V , w,w′ ∈ W and λ ∈ F:

(1) (v + v′, w)− (v, w)− (v′, w)
(2) λ(v, w)− (λv, w)
(3) (v, w + w′)− (v, w)− (v, w′)
(4) λ(v, w)− (v, λw)

Define: V ⊗W = 〈V×W 〉
R

. Finally, equip it with a bilinear mapping:

⊗ : V ×W → 〈V ×W 〉 → V ⊗W
(v, w) 7→ (v, w) 7→ v ⊗ w = (v, w) +R.

At least, ⊗ is well defined as the composition of two well defined map-
pings. Check bilinearity: ⊗ for all v, v′ ∈ V , w ∈ W .

(v + v′, w) 7→ (v + v′)⊗ w = (v + v′, w) +R

(v, w) 7→ v ⊗ w = (v, w) +R

(v′, w) 7→ v′ ⊗ w = (v′, w) +R.

Since, by (1) in the definition of R , we have (v+v′, w)−(v, w)−(v′, w) ∈
R, we can conclude

(v + v′, w) +R = ((v, w) +R) + ((v′, w) +R),

i.e..

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w.

The other statements in the definition of bilinearity follow from (2),(3)
and (4) in a similar way.

Remark 26.9. Now we have defined the tensor product. The next task
is to prove that it has the properties (1) and (2) in the alternative
definitions.

(1) Universlity of ⊗: Consider any bilinear B : V ×W → P . Try to
prove the existence of exactly one a linear mapping L : V ×W → P
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such, that the diagram

V ×W ⊗−→ V ⊗W
B

↘ ↓ L
P

commutes, i.e.. B = L ◦ ⊗. Uniqueness of L is obvious, since the only
candidate for L maps simple tensors like this:

L : v ⊗ w 7→ B(v, w)

and L is determined by the images of the generating vectors of V ⊗W .
What remains is to construct such a linear mapping L. The existence
of such an L is non-trivial, since the simple tensors are not linearly
independent, so their images cannot be chosen arbitrarily. We construct
L like this: First define a linear mapping L̃ : 〈V ×W 〉 → P by fixing
suitable the images of the basis vectors of 〈V × W 〉: Take (v, w) 7→
B(v, w). Prove that L̃ can be factored through the factor space i.e.
there exists a linear mapping L : V ⊗W → P , s th. L̃ = L ◦φ, same as

〈V ×W 〉 φ−→ V ⊗W
L̃

↘ ↓ L
P

where φ is the canonical surjection

〈V ×W 〉 → 〈V ×W 〉
R

= V ⊗W

(v, w) 7→ (v, w) +R = v ⊗ w.

such an L exists since Kerφ = R ⊂ Ker L̃. This in turn follows from

the observation that if a+R = b+R ∈ 〈V×W 〉
R

= V ⊗W , then a− b ∈
R ⊂ Ker L̃ ⊂ 〈V ×W 〉, so L̃a = L̃b. Therefore, the mapping

V ⊗W → P : a+R 7→ L̃a

is well defined and of course linear.

(2) The images of the basis vectors of 〈V ×W 〉 where v ∈ V and
w ∈ W , are not linearly independent in v ⊗ w as is seen for example
by looking at

(v + v′)⊗ w − v ⊗ w − v′ ⊗ w = 0.

But they span V ⊗W = 〈V×W 〉
R

, whose elements, the tensors are finite
sums of these simple tensors. If K is a basis for V and L for W , then
the elements of V are finite sums

∑
k∈K λk k and the elements of W are
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sums
∑

l∈L µl l so the elements of the tensor product space are finite
sums

(
∑
k∈K

λk k)⊗ (
∑
l∈L

µl l) =
∑

(k,l)∈K×L

λkµl k ⊗ l =
∑

(k,l)∈K×L

ρk,l k ⊗ l.

We have just proved that the tensor products of the original basis
vectors span the tensor product space. V ⊗ W . Now we prove their
linear independence. Let∑

(k,l)∈K×L

λk,l k ⊗ l = 0 ∈ V ⊗W.

By universality of the bilinear mapping ⊗ every bilinear mapping B :
V ×W → F corresponds to a unique linear mapping L : V ×W → P
making the diagram

V ×W ⊗−→ V ⊗W
B

↘ ↓ L
F

commutative, i.e.. such that B = L◦⊗. In particular, for every bilinear
mapping B : V ×W → F we have

∑
(k,l)∈K×L λk,l B(k, l) = 0. But the

images of the pairs of basis vectors cab e chosen freely when setting up
a bilinear mapping. Therefore

∑
(k,l)∈K×L λk,l Bk,l = 0 for all choices

Bk,l ∈ F, so every λk,l is 0. �

Example 26.10. Let V = Rn, W = Rm and {e1, . . . , en}, {f1, . . . , fm}
their bases. Now V ⊗W = Rnm, which as a vector space is the same as
the space of all n×m-matrices Mn×m = Rn×m. In particular, a basis for
V ⊗W consists of all the tensor products of the original basis vectors

ei ⊗ fj =


0 . . . 0
. . . . . . . . .
. . . 1 . . .
. . . . . . . . .
0 . . . 0

 (j)

(i)

= [δαiδβj]α,β.

In these bases tensor products of vectors Näissä kannoissa saadaan siis
yleisten vektorien tensorituloksi eli yksinkertaiseksi tensoriksi (a1, . . . , an)⊗
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(b1, . . . bm) 5a1
...
an

⊗
 b1

...
bm

 =

a1b1 a1b2 . . . a1bm
...

...
...

...
anb1 anb2 . . . anbm

 , joka is

a1
...
an

 [b1 . . . bn
]
.

The product matrix has linearly dependent columns, so it has rank 1
(ir 0). It is obvious that every rank one matrix can be constructed like
this, so it represents a simple tensor.

26.3. Symmetric and alternating bilinear mappings.

Definition 26.11. Let V and P be vector spaces.

(1) A bilinear mapping B : V × V → P is called symmetric, if

B(v, w) = B(w, v) ∀v, w ∈ V.
(2) A bilinear mapping B : V × V → P is called alternating, if

B(v, v) = 0 ∀v ∈ V.

Remark 26.12. If the coefficient field is F is C or any subfield of C 6,
then B : V ×V → P is alternating, if and only if it is anticommutative:

B(v, w) = −B(w, v) ∀v, w ∈ V,
. To prove this, just notice that if B is alternating, then 0 = B(v +
w, v + w) = B(v, v) + B(v, w) + B(w, v) + B(w,w) = 0 + B(v, w) +
B(w, v) + 0 and if we assume that B is anticommutative, then 0 =
B(x, x) +B(x, x) = 2B(x, x), so B(x, x) = 0.

Example 26.13. The fundamental example of asymmetric bilinear
mapping is the product of polynomials: let V = F[x] = {f

∣∣ f be a one
variable F- polynomial}. The usual multiplication of polynomials V ×
V → V is biklinear. The same holds in th space of several polynomials
of several variables ie. in the space V = F[x1, . . . , xd].

More generally, in any commutative F-algebra A internal multiplica-
tion A × A → A is F-bilinear and symmetric; in fact a commutative
F-algebra is by definition a F-vector space together with a symmetric
bilinear mapping B : A× A→ A. 7

5Ei ole Kroneckerin tulo?!
6It is sufficient to assume that 2 6= 0 in F.
7More genreally, if a bilinear mapping B : A × A → A is associative, then

(A, +, B) is simultaneously a vector space and a ring, ie an associative algebra. An
assosiatiive algebra is not always commutative and a general algebra same as just
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Example 26.14. In R3 the ”cross product” of two vectors is an example
of an alternating bilinear mapping. A more fundamental example is gi-
ven by the determinant of a 2× 2-matrix:

Let V = R2. The mapping associating to a pair of vectors v =

[
a11

a21

]
and w =

[
a12

a22

]
the determinant B(v, w) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ is an alternating

bilinear mapping V × V → R.

26.4. Multilinear mappings. It is natural to generalise the determi-
nant example to Rd. The determinant is linear in the column vectors
and has the value 0, whenever two columns coincide. This gives the
motivation to consider alternating multilinear mappings of more than
2 variables.

Definition 26.15. Let V1, . . . , Vn and P be vector spaces and F their
common coefficient field.

(1) The mapping M : V1× · · · × Vn → P is multilinear, in this case
n−linear, if its all partial mappings

V1 → P : v1 7→M(v1, . . . , vn),

V2 → P : v2 7→M(v1, . . . , vn),

. . .

Vn → P : vn 7→M(v1, . . . , vn),

are linear.
(2) An n-linear mappingM : V n → P is symmetric, ifM(v1, . . . , vn)

does not depend on the order of the variables v1, . . . , vn. This
means that for all permutations σ ∈ Sn we have

M(vσ(1), . . . , vσ(n)) = M(v1, . . . , vn)

(3) An n-linear mapping M : V n → P is alternating, if

M(v1, . . . , vn) = 0 whenever vi = vj for some i 6= j.

Remark 26.16. When F is a subfield of C, then a multilinear mapping
is alternating if and only if M(v1, . . . , vn) = 0 whenever v1, . . . , vn are
linearly dependent. This is equivalent to saying that the mapping chan-
ges sign whenever two variables are interchanged. The classical example

a bilinear mapping, is not always associative. In particular, lien algebras will not
be associative, nor commutative.
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of an alternating multilinear mapping is — as was already mentioned–
the determinant considered as a function of its column (or rows)

26.5. Symmetric and outer powers.

Definition 26.17. Let V1×· · ·×Vn be (F-) vector spaces. An n-linear
map ⊗ : V1 × · · · × Vn → W is called the tensor product of the spaces
V1, . . . , Vn and denoted W = V1 ⊗ · · · ⊗ Vn, if ⊗ is a universal n-linear
mapping in the following sense:

Every n−linear mappings M : V1 ⊗ · · · ⊗ Vn → U can be factored
into B = L ◦ ⊗, where L : V1 ⊗ · · · ⊗ Vn → U is a linear mapping
uniquely determined by the n−linear mapping M .

V1 × · · · × Vn
⊗−→ V1 ⊗ · · · ⊗ Vn
M

↘ ↓ L
U

The construction of the tensor product of two spaces can readily be
generalised to the case of several spaces and proves its existence and
uniqueness. The same result can be obtained by paying attention to
that V1 ⊗ · · · ⊗ Vn can be defined as (. . . (V1 ⊗ V2) ⊗ · · · ⊗ Vn). A
basis for the tensor product is given by K1 × · · · × Kn, where Kj is
a basis of the original space Vj. In particular, the d:th tensor power
Rn ⊗ · · · ⊗ Rn = (Rn)⊗d has a basis consisting of all ei1 ⊗ · · · ⊗ eid ,
where {e1, . . . , en} is a basis of the original space Rn.

By the same principle that we used the concept of bilinear mappings
for constructing the tensor product, we can define and construct the
symmetric and alternating (same as outer) powers of a vector space
using symmetric and alternating multilinear mappings:

Definition 26.18. Let V be a (F-) vector space A symmetric n-linear
mapping · : V × · · · × V = V n → W is the n:th symmetric power
W = SnV , if it is the universal symmetric n-linear mapping in the
following sense:

Every symmetric n−linear mapping M : V n → U is of the form
M = L◦·, where L : SnV → U is a linear mapping depending uniquely
on the symmetric n−linear mapping M .

V n ·−→ SnV
M

↘ ↓ L
U
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The existence of a symmetric power is proved by construction. This
can be done using bases and/or factor spaces. We skip the construction
since the following construction of the outer power is almost identical.
We just remark that a basis for the symmetric power is given by all
products of the original basis vectors ei1 · · · · · eid , where i1 ≤ · · · ≤ in,
and the original index set I is ordered.

Example 26.19. Let V={degree 1 homogenous polynomials of n variables} =
〈x1, . . . , xn〉. In this case SdV = { degree d homogeneous polynomials
of n variables}, for example

S2V = 〈x2
1, x1x2, x1x2, . . . x1xn, x

2
2, x2x3, . . . , . . . x

2
n〉.

In this example the symmetric product is the same thing as the ”formal
product” of polynomials.

Definition 26.20. Let V be a (F-) vector space. An alternating n-
linear mapping ∧ : V × · · · × V = V n → W is called the n:th outer
power of the space V and denoted W = ΛnV , if it is the universal
alternating n-linear mapping :

Each alternating n−linear mapping M : V n → U is of the form
M = L ◦ ∧, where L : ΛnV → U is a linear mapping depending only
on the alternating n−linear mapping M .

V n ∧−→ ΛnV
M

↘ ↓ L
U

The existence of an outer power is proved by constructing it. For
simplicity, we do it for n = 2 only. Like above in the construction of
the tensor product, we begin by considering the free vector space 〈V 2〉,
which has all of V 2 as basis. Next define the subspace R, spanned by
the ”relations” mentioned above in the tensor product construction,
and one new. This means: R ⊂ V 2 is the smallest vector subspace
containing the following vectors: for all v, v′w,w′ ∈ V and λ ∈ F:

(1) (v + v′, w)− (v, w)− (v′, w)
(2) λ(v, w)− (λv, w)
(3) (v, w + w′)− (v, w)− (v, w′)
(4) λ(v, w)− (v, λw)
(5) (v, w) + (v, w)
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Now the factor space Λ2V = 〈V 2〉
R

has the universal property defining
the outer power, when equipped with the bilinear mapping

∧ : V × V → 〈V 2〉 → Λ2V

(v, w) 7→ (v, w) 7→ v ∧ w = (v, w) +R.

follows from condition (5)). We sum up the properties of ∧: bilinearity

λ · (x ∧ y) = (λ · x) ∧ y = x ∧ (λ · y)

(x+ y) ∧ z = x ∧ z + y ∧ z
x ∧ (z + w) = x ∧ z + x ∧ w

and alternation:
v ∧ w = −w ∧ v.

An outer power satisfying the universal property does exist.

The images of the pairs ei ∧ ej of original basis vectors of V have

images ei∧ej spanning all of Λ2V = 〈V×W 〉
R

, so the elements of this space
are the finite sums of these generators. If the basis K of V is an ordered,
then already the products , ek∧el with k < l, span Λ2V , since ek∧el = 0,
for k = l and ek ∧ el = −el ∧ ek, where k > l. Linear independence of
the remaining basis vector candidates is proven essentially in the same
way as we did for the basis of the tensor product.

the basis becomes {ek ∧ el
∣∣ k < l} = {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, . . . e1 ∧

ed, e2 ∧ e3, e2 ∧ e4, . . . e2 ∧ ed, e3 ∧ e4, . . . , . . . ed−1 ∧ ed, }, so dim(Λ2V ) =
1
2
n(n− 1).

Example 26.21. Take V = Rn with basis {e1, . . . , en}. NowΛ2V can
be identifies a as a vector space with the space of all anti-symmetric
n× n-matrices.

Remark 26.22. Similar considerations can be carried through for higher
powers ΛnV . In particular, if V has its basis K ordered, then the basis
vectors for ΛnV can be taken to be the outer products of the original
basis vectors, ek1 ∧ ek2 ∧ · · · ∧ ekd , withk1 < k2 < · · · < kd.

Example 26.23. By what was just proved, ΛdRd is one dimensional
with one basis vector being for instance e1 ∧ e2 ∧ · · · ∧ ed. Remember
that the determinant of a n × n-matrix is an alternating multilinear
mapping from the column vectors to the ground field R.

(Rn)n
∧−→ ΛnRn ∼ R

det

↘ ↓ L = λ·
R
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We notice that the determinant is, up to a multiplicative constant,
the only alternating n-linear mapping from n-dimensional space to the
numbers. The same holds for any ground field F.

27. Tensor products of representations

Example 27.1. In example ?? we mentioned the space SdV of homo-
geneous polynomials of degree d and n variables. A special case is

S2V = 〈x2
1, x1x2, x1x2, . . . x1xn, x

2
2, x2x3, . . . , . . . x

2
n〉.

A linear change of co-ordinates is a linear mapping

SdV → SdV : P 7→ P ◦ L,

where L : Rn → Rn is linear.8 If ρ : G → GLn(R) is a representation,
then also g 7→ (P 7→ P ◦ρ(g)) is a representation of G. This is a special
case of the following general construction.

27.1. Induced representations. 9 By definition, a representation of
a Lie group G in a vector space V is a smooth group homomorphism
G→ GL(V ).

Definition 27.2. Let ρ and ρ′ : G → GL(V ) be representations of a
group G in finite dimensional spaces V and W . Then the following are
representations

(1) ρ⊗ ρ′ : g 7→ (ρ⊗ ρ′)g : V ⊗W → V ⊗W : u⊗ w 7→ ρgu⊗ ρgv.
(2) ρ · ρ′ : g 7→ (ρ · ρ′)g : S2V → S2V : u · w 7→ ρgu · ρ′gv.

(3) ρ ∧ ρ′ : g 7→ (ρ ∧ ρ′)g : S2V → S2V : u ∧ w 7→ ρgu ∧ ρ′gv.

Here linear mappings are determined by giving the images of the
basis vectors.

Example 27.3. The tautological representation of the group G =
GL2(R) acts in R2. It induces a representation in the outer product
λ2(R2). The induced representation is one dimensional with basis vector
e1∧e2. Let us find an explicit expression for it: An element of the group

8Strictly speaking, polynomials are not functions but can often be interpreted as
such.

9Seems, in Serre’s book, induced representations are something different.
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G = GL2(R)is a matrix g =

[
a b
c d

]
. It maps the basis vector of the

outer product like this:

e1 ∧ e2 7→ ge1 ∧ ge2 =

[
a b
c d

] [
1
0

]
∧
[
a b
c d

] [
0
1

]
=

[
a
c

]
∧
[
b
d

]
= (ae1 + ce2) ∧ (ce1 ∧ de2)

= abe1 ∧ e1 + ade1 ∧ e2 + cbe2 ∧ e1 + cde2 ∧ e2

= (ad− bc)e1 ∧ e2

= det g e1 ∧ e2.

All in all, the second outer power of any linear mapping in R2, in
particular a representation matrix, is multiplication by its determinant
in one dimensional space.

This can be generalised. The tautological action of GLn(Rn) in Rn in-
duces a one dimensional representation Λn(Rn), which is multiplication
by the determinant of the original matrix. We leave it as a n exercise
to find out what the lower outer powers of the tautological action of
GLn(Rn) in Rn induces into Λm(Rn), for 1 < m < n.

Example 27.4. The tautological action of the group G = GL2(R) in
R2 induces a representation in the tensor product R2 ⊗ R2. . Let us
decompose it into a direct product of irreducible representations.

The first observation is that something is needed, since the represen-
tation of G = GL2(R)

g : R2 ⊗ R2 → R2 ⊗ R2 : g(v ⊗ w) = gv ⊗ gw

is not irreducible but has at least one proper sub-representation, namely

Ws =
〈
{v ⊗ w + w ⊗ v

∣∣ v, w ∈ R2}
〉
.

This motivates to check whether possibly also

W∧ =
〈
{v ⊗ w − w ⊗ v

∣∣ v, w ∈ R2}
〉

is a sub-representation, and it turns out to be. let us check these two
representations for reducibility without using any theory, just by calcu-
lating them explicitly. The first step is to calculate the tensor product
R2 ⊗ R2 → explicitly:
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The elements of GL2(R) are all invertible 2× 2-matrices

[
a b
c d

]
. The

space R2 ⊗ R2 → is spanned by the simple tensors

v ⊗ w =

[
a1

a2

]
⊗
[
b1

b2

]
=

[
a1

a2

] [
b1 b2

]
=

[
a1b1 a1b2

a2b1 a2b2

]
.

In particular the standard basis vectors will be

e1⊗ e1 =

[
1 0
0 0

]
, e1⊗ e2 =

[
0 1
0 0

]
, e2⊗ e1 =

[
0 0
1 0

]
, e2⊗ e2 =

[
0 0
0 1

]
.

The generating vectors of the subspace W∧ are of the form

v ⊗ w − w ⊗ v =

[
a1b1 a1b2

a2b1 a2b2

]
−
[
a1b1 a1b2

a2b1 a2b2

]T
=

[
0 a1b2 − a2b1

a2b1 − a1b2 0

]
= λ

[
0 1
−1 0

]
,

where λ = a1b2 − a2b1. In other words

W∧ = λ

{[
0 1
−1 0

] ∣∣ λ ∈ R
}

=
{
λ (e1 ⊗ e2 − e2 ⊗ e1)

∣∣ λ ∈ R
}
.

The action of the group in this one-dimensional space is determined
by its action on the basis vector, which, by definition, is the following:[
a b
c d

]
(e1 ⊗ e2 − e2 ⊗ e1) = (

[
a b
c d

]
⊗
[
a b
c d

]
) (e1 ⊗ e2 − e2 ⊗ e1)

=

[
a b
c d

]
e1 ⊗

[
a b
c d

]
e2 −

[
a b
c d

]
e2 ⊗

[
a b
c d

]
e1

=

[
a
c

]
⊗
[
b
d

]
−
[
b
d

]
⊗
[
a
c

]
=

[
ab ad
cb cd

]
−
[
ba cd
ad cd

]
=

[
0 ad− bc

cb− ad 0

]
= det

[
a b
c d

]
·
[

0 1
−1 0

]
= det

[
a b
c d

]
· (e1 ⊗ e2 − e2 ⊗ e1) .

So we have proved by direct calculation, that the sub-representation
W∧ of the representation R2 ⊗ R2 is multiplication in one-dimensional
space by the determinant of the group element. So this is isomorphic
as a representation to Λ2R2.

In the subspace Ws we can choose a basis

{e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1} ⊂ Ws,
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since these three are linearly independent and the space Ws is at most
3-dimensional, since is a nontrivial subspace of a 4-dimensional space.

The action of GL2(R) in S2R can nicely be interpreted like we did
in example ?? in the beginning of this section, i.e. as linear changes of
co-ordinates in 〈x2, y2, xy〉.

We leave it as an exercise to show that the mapping Ws → S2R

e1 ⊗ e1 7→ x2

e2 ⊗ e2 7→ y2

e1 ⊗ e2 + e2 ⊗ e1 7→ 2xy

is an isomorphism of representations.

Finally, we check that S2R is irreducible. It is sufficient to find a
vector — same as a polynomial— whose orbit will span the whole 3-
dimensional space S2R, which is the case if there are 3 linearly inde-
pendent polynomials in the orbit. This is easily found by trial (and

error). Remember, that an element g =

[
a b
c d

]
of G = GL2(R) acts in

the space of polynomials by

x 7→ ax+ by

y 7→ cx+ dy.

In particular, the basis vectors of S2R are mapped like this:

x2 7→ (ax+ by)2 = a2x2 + 2abxy + b2y2

y2 7→ (cx+ dy)2 = c2x2 + 2cdxy + d2y2,

xy 7→ (ax+ by)(cx+ dy)2 = acx2 + (ad+ bc)xy + bdy2,

so by choosing a = b = c = −d = 1 we get

xy 7→ acx2 + (ad+ bc)xy + bdy2 = x2 − y2,

and by choosing a = 1,= b = c = d = 0 we get

x2 − y2 7→ x2,

and by a = b = c = 0, d = 1 we get

x2 − y2 7→ −y2.

The linearly independent polynomials xy, x2 and −y2 are in the same
orbit!
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Now we have reduced the tensor product R2 ⊗ R2 to a direct sum
which up to isomorphism is

R2 ⊗R2 = Λ2R⊕ S2R.

This result can be generalised to higher tensor powers, which we will
do later in ??.

28. Lie algebras — introduction

28.1. An abstract definition.

Definition 28.1. A lie algebra is a vector space V together with an
alternating bilinear mapping, called the lie bracket

V × V → V : (X, Y ) 7→ [X, Y ],

satisfying the Jacobi identity : for all X, Y, Z ∈ V :

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The coefficient field of the vector space F can be any field, but in this
text it is most often R, sometimes C.

A lie algebra homomorphism is a liner mapping f : V → V ′, whe-
re V and V ′are lie algebras and f preserves brackets, in other words
[f(X), f(Y )] = [X, Y ] for all X, Y ∈ V . A lien algebra isomorphism is
also a bijection, and its inverse will be a homomorphism.

A lie sub-algebra is a vector subspace of a lie algebra which is stable
under the bracket operation, i.e. ,it contains the brackets of its elements,
so it is a lie algebra in its own right.

Remark 28.2. 1) Lie algebras form a category, in particular composed
mappings of homomorphisms are homomorphisms.

2) A lie algebra is generally not associative. The Jacobi identity can
be seen as a surrogate property.

3) The motivation to consider lie algebras in the context of Lie groups
is the following: To each Lie group one can — in a natural way —
associate a lie algebra, and essentially all lie algebras arise in this way.
The same is true with respect to representations.

Example 28.3. The most trivial example of a lie algebra is the is trivial
lie algebra, i.e. any vector space with the zero bracket: [X, Y ] = 0
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Example 28.4. The fundamental example of a lie algebra is the space
of all (invertible or not!) n× n-matrices

gln = gln(R) = Rn×n

equipped with the standard bracket

[X, Y ] = XY − Y X.
It is easy to check that the standard bracket is an alternating bilinear
mapping. The Jacobi identity is trivial as well: :

[X, Y Z − ZY ] + [Y, ZX −XZ] + [Z,XY − Y X]

= X(Y Z − ZY )− (Y Z − ZY )X + Y (ZX −XZ)

− (ZX −XZ)Y + Z(XY − Y X)− (XY − Y X)Z

= X(Y Z)− (XZ)Y − (Y Z)X + (ZY )X + Y (ZX)− Y (XZ)

− (ZX)Y + (XZ)Y + Z(XY )− Z(Y X)− (XY )Z + (Y X)Z

= XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ
− ZXY +XZY + ZXY − ZY X −XY Z + Y XZ

= 0.

It will turn out that all lie algebras of finite dimensional lie groups are
sub-algebras of this.

Example 28.5. The former ca be generalised. starting with any as-
sociative algebra, U one can equip it with the usual bracket

[X, Y ] = XY − Y X.

Example 28.6. The following example of a lie algebra is also an
example of the lie algebra of a Lie group, and also an example of a
sub-lie-algebra of gln(R). Recall ?? that the tangent space of the Lie
group SLn(R) at the neutral element is s

Te(SLn(R)) = sln(R) = {X ∈ gln(R)
∣∣ Tr(x) = 0}.

This is a lie sub-algebra, which can be checked by noticing that is
is a vector subspace and [X, Y ] ∈ sln(R) whenever X, Y ∈ sln(R),
something that must be proved by a little calculation — left to the
reader.

Example 28.7. The Heisenberg lie algebra is a three dimensional vec-
tor space V , where the brackets of the bais vectors are jossa kantavek-
torien Lien sulkeet ovat

[X, Y ] = Z

[Y, Z] = 0

[Z,X] = 0.
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It is rather easy to notice that this is isomorphic to the lie sub-algebra of
sl3(R) consisting of proper upper triangular matrices. The isomorphism
is given by

X 7→

0 1 0
0 0 0
0 0 0


Y 7→

0 0 0
0 0 1
0 0 0


Z 7→

0 0 1
0 0 0
0 0 0

 .

29. The lie algebra of a Lie group

29.1. Introduction. The lie algebra G of a Lie group G is as a vector
space identical to the tangent space of the smooth manifold G at the
identity element e ∈ G. smoothn moniston G tangenttiavaruus ryhmän
G neutraalialkion e ∈ G kohdalla. Also, it is equipped with a Lie brac-
ket, the definition of which depends on the group operaion in G. Before
giving any definition of the bracket, consider a basic example of a Lie
group, say the group of invertible n × n-matrices GLn(R). Its neutral
element is the unity matrix I. Since GLn(R) is an open subset of the

space of all n × n-matrices Mn×n(Rn) = Rn×n ∼ Rn2
open subset, its

tangent space at all points, in particular at I, is all of Rn2
same as

Mn×n. This space was equipped with a lie bracket in example ??. We
defined [X, Y ] = XY − Y X. It turns out that this is in this case just
the lie bracket coming from the general definition of the lie algebra of
a Lie group. The general definition and the proof of this fact will fill
the next few pages. Let us sketch the construction:

Remark 29.1. Phase 1. Let γ be the action of an n-dimensional Lie
group by conjugationin the group G itself, i.e.

γg : G→ G

h 7→ ghg−1

Each mapping γg is a diffeomorphism and γg(e) = e, so its derivative
at e is a bijective linear mapping

Adg = deγg : TeG→ TeG.
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In this way we have constructed a representation of the Lie group G in
its own tangent space:

Ad : G→ GL(TeG) ∼ GLn(R)

g 7→ (Adg : TeG→ TeG)

Phase 2. We notice that also the mapping Ad is smooth. So it has
a derivative at e ∈ G. Define

ad = de(Ad) : TeG→ TI(GL(TeG))

X 7→ (adX : TeG→ TeG).

The derivative ad of the mapping Ad is a linear mapping from the tan-
gent space TeG of G to the tangent space of the vector space GL(TeG)
at I, which of course is the linear space itself

TI(GL(TeG)) ∼Mn×n ∼ {lineaarikuvaukset TeG→ TeG}.

Phase 3. Finally, define the lie bracket in TeG by

[X, Y ] = adXY.

It turns out that this mapping is a lie bracket in the abstract sense:
bilinear, alternating and satisfying the Jacobi identity. We call the tan-
gent space TeG with this bracket the lie algebra G of the Lie group
G.

Remark 29.2. It will take a while until we have proven all these state-
ments. Let us begin by proving the existence and bilinearity of the lie
bracket in the tangent plane.

Phase1. Conjugation in a Lie group G is composed of two diffeo-
morphisms,

γg : h 7→ gh 7→ g−1,

therefore itself a diffeomorphism, so its derivative

Adg = deγg : TeG→ TeG

at e exists and is a linear bijection. By the chain rule Adgg′ = deγgg′ =
de(γg ◦ γg′) = dγ′(e)γg ◦ deγg′ = deγg ◦ deγg′ = AdgAdg′ , so we get a
representation

Ad : G→ GL(TeG) ∼ GLn(R).

To be a Lie group representation, Ad has to be smooth. This may be
difficult to verify without using co-ordiantes, but a minute’s thought
will reveal that in local co-ordinates all components of the conjugation
mapping G×G→ G : (g, h) 7→ ghg−1 are smooth real valued functions.
Its derivative, which is nothing but Adg has a Jacobi matrix whose all
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entries are partial derivatives of these components, hence smooth as
well. So the mapping g 7→ MatAdg is smooth i.e. Ad is smooth.

Phase 2. Adg has a derivative at e ∈ G, called ad. This derivative
is, by definition, a linear mapping, i.e.

TeG→ TI(GL(TeG)) ∼Mn×n ∼ {linear mappingsTeG→ TeG}.

Vaihe 3. a) Bilinearity: Since adX is a linear mapping TeG→ TeG,
the mapping Y 7→ [X, Y ] = adXY is tof course linear in the variable
Y . Linearity in X depends on the fact that the mapping ad : X 7→ adX
is the derivative of Ad, so it is linear.

We will only later (in ??) prove the rest, namely that our bracket is:

b) alternating and

c) satisfies the Jacobi identity

Instead of giving a proof, we inspect some examples::

Example 29.3. The Lie group S1 can be identified with the unit circle
U(1) = {z ∈ C

∣∣ |z| = 1} ⊂ C ∼ R2, where multiplication of complex
numbers is the group operation and 1 is the neutral element. Conjuga-
tion by the number g ∈ U(1) is nothing but z 7→ gzg−1 = zgg−1 = g,
in other words every γg is the identical mapping. The derivative of the
identical mapping is of course the identical mapping of the tangent
space, so Ad is a constant mapping S1 → GL(T1S

1). The derivative
of a constant is zero, so adX = 0 for all X ∈ T1S

1 and consequently
[X, Y ] = adXY = 0 for all X and Y .

The same argument shows that the lie algebra of every abelian Lie
group is trivial.

Example 29.4. Next we prove that the lie algebra of G = GLn(R)is
what we dafined already in ?? namely gln(R). We alrady know that
the tangent space of the manifold GLn(R) at the neutral element I is
the correct set TI(GLn(R)) = Rn×n. What remains to be proven is that
the lie bracket defined by conjugation and the derivatives Ad and ad
will be the same thing as the standard bracket in gln(R).

Conjugation by a matrix g is the mapping γg : h 7→ gh 7→ ghg−1,
which is the composition of two linear mappings, hence linear, strictly
speaking the restriction of a linear mapping Rn2 → Rn2

to the open



38 KAREN E. SMITH

set GLn(R) ⊂ Rn2
. Its derivative at I is its continuation as a linear

mapping Rn2 → Rn2
:

AdgY = gY g−1.

To calculate the derivative of the mapping

Ad : G→ GL(T (Rn2

)) : g 7→ (Y
Adg7→ gY g−1)

with respect to g: we notice that it is the composition of the restriction
of the bilinear mapping

B : G×G→ GL(T (Rn2

)) : (g, g̃) 7→ (Y
Bg,g̃7→ gY g̃)

to an open set and the matrix inversion mapping G → G × G : g 7→
(g, g−1), so the derivative is given by the chain rule, once we find the
derivative of these two mappings.

The derivative of any bilinear mapping is well known10 B : Rn ×
Rm → Rd:

d(A,B)B(X, Y ) = B(A, Y ) +B(X,B).

At the identity element we get

d(I,I)B(X, Y ) = B(I, Y ) +B(X, I).

Applying the formula for the derivative of a bilinear mapping toAA−1 =
I one can find the derivative of inversion k : G→ G : A 7→ A−1

dgk(X) = −g−1Xg−1.

At e = I ∈ G = GLn(R) this becomes

dIk(X) = −X.

Combining these results by the chain rule gives what we were searching
for:

ad : TIG
dI(Id,k)→ TIG× TIG

d(I,I)B→ TI(GL(T (Rn2

)))

X
dI(Id,k)→ (X,−X)

d(I,I)B→ B(I,−X) +B(X, I)

= (Y 7→ (IY (−X) +XY I))

= (Y 7→ (XY − Y X)),

which is the standard bracket. �

10On Purmosen diff lask 1 monisteessa harjoitustehtävänä! Hyvä kaava. Tämän
erikoistapauksena saadaan mm. tunnettu tulon derivoimiskaava.
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Theorem 29.5. Let G be a Lie group. The linear mapping ad : TeG→
gl(TeG) same as G → gl(G) preserves the lie bracket, in other words
X, Y ∈ G:

ad[X,Y ] = [adX , adY ],

where on the left we have the bracket in the lie algebra G and on the
right the bracket in the lie algebra of the group GL(TeG), which was
just proven to be gl(TeG) with the standard bracket.

Remark 29.6. We will not give a final proof yet. We will only prove
that the statement of the preceding theorem is equivalent to another
statement, namely that the bracket in generalG does satisfy the axioms
of a lie bracket, alternating and Jacobi.

Todistus. Let us believe in the Jacobi identity for the bracket in G

ad[X,Y ] = [adX , adY ],

where on the left we have the bracket in the lie algebra G and on the
right the bracket in the lie algebra of the group GL(TeG), which was
just proven to be gl(TeG) with the standard bracket.

We will not give a final proof yet. We will only prove that the sta-
tement of the preceding theorem is equivalent to another statement,
namely that the bracket in general G does satisfy We have to prove

ad[X,Y ](Z) = [adX , adY ](Z)

eli ad[X,Y ](Z) = (adX ◦ adY )(Z)− (adY ◦ adX)(Z)

X, Y, Z ∈ G = TeG.

We begin by writing the Jacobi identity in G:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

[X, [Y, Z]]− [Y, [X,Z]]− [[X, Y ], Z] = 0

adX([Y, Z])− adY ([X,Z])− ad[X,Y ](Z) = 0

adX(adY (Z))− adY (adX(Z))− ad[X,Y ](Z) = 0

adX ◦ adY − adY ◦ adX = ad[X,Y ]

�

The result can be generalised for any lie group homomorphism, in
particular for representations:



40 KAREN E. SMITH

Theorem 29.7. Let f : G → H be aLie group homomorphism. Its
derivative dfe : TeG → gl(TeG) same as G → H is a lie algebra ho-
momorphism which means a linear mapping preserving the bracket: in
other words for all X, Y ∈ G:

dfe[X, Y ] = [dfeX, dfeY ],

where on the left there is the Lie bracket in G and on the right the
bracket in H.

Sketch of proof. Conjugation in a group commutes with a homo-
morphism, of course, so there is a commutative diagram

G
f−→ H

γg ↓ · ↓ γf(g)

G
f−→ H

i.e. f(ghg−1) = f(g)f(h)f(g)−1 for all g, h ∈ H. Calculating derivatives
with the chain rule gives a commutative diagram for all g ∈ G

G def−→ H
Adg ↓ · ↓ Adf(g)

G def−→ H

so there are mappings

G
f−→ H

Ad ↓ · ↓ Ad
GL(G) GL(H)

such that for all X ∈ Ad(G) ⊂ GL(G) we have

dfe(Adg(X)) = Adf(g)def(X).

The derivative of this with respect to g gives

G def−→ H
ad ↓ ↓ ad
gl(G) gl(H),

where again in the respective image set ad(G) ⊂ gl(G) there is commu-
tativity of the diagram, i.e. for every Y ∈ G

def(adX)(Y ) = addef(X)def(Y ),

eli def([X, Y ]) = [def(X), def(Y )].
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30. The exponential mapping — a preliminary definition

Definition 30.1. A representation of a real lie algebra is a lie algebra
homomorphism to GLn(R). Similarly we define a complex and a general
lie algebra representation.

30.1. The idea of the exponential mapping. We have found a na-
tural way to attach a lie algebra G to every Lie group G. As a vector
space G = TeG. By the previous theorem, this is a functorial correspon-
dence in the sense that it also respects homomorphisms, in particular
representations. So a representation ρ : G→ GLn(R) of a Lie group G
gives rise to a lie algebra representation deρ : G → gln(R). Our next
task is to find a way to search for a way to produce an inverse of this
correspondence: given a representation of the lie algebra, try to find a
representation of the original group. The exponential mapping is a tool
for this purpose.

Remark 30.2. The exponential mapping will be a smooth mapping with
the following properties:

(1) 0 7→ e ∈ G
(2) d0 exp = IdG.

Some more condition. (The two properties above do not characterise
any map, as is seen from the following example.

Example 30.3. Take G = (R∗, ·), the group of invertible real numbers
with identity element 1. Its tangent space at 1 is G = T1(R∗) ∼ R, where
the lie bracket is trivial [X, Y ] = 0, since G is commutative (??). In
this example, the usual exponential function will have the properties
(1) and (2): x 7→ ex is smooth G → G same as R→ R∗ = R r {0} and

(1) 0 7→ e0 = 1 ∈ G
(2) d0(x 7→ ex) = IdR, since the Jacobi matrix of the derivative is

the 1× 1- matrix [∂e
x

∂x
]x=0 and e0 = 1.

This example shows why properties (1) and (2) are insufficient to
characterise the exponential mapping: Any function f : R→ R∗,which
coincides with exp in any neighbourhood of 0 will satisfy (1) and (2)
since it has the same derivtive

[
∂f
∂x

]
x=0

and the same value f(0) = 1.

It should be no surprise that the definition is still incomplete; after
all we have not used the group operation at all. Also, in this example
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it happens tha exp happens to be a group homomorphism from the
additive group of the vector space to the group G but this is not true
for a general exponential map of a Lie group. It is just a consequence
of this example happening to be one dimensional.

Next we define the exponential mapping for all ”classical” Lie groups/algebras.

Definition 30.4. The classical exponential mapping is the mapping

exp : Mn×n →Mn×n

A 7→
∞∑
p=0

1

p!
Ap = I + A+

1

2
AA+

1

6
AAA+ · · ·

It is easy to verify the absolute convergence of this series in the usual
Euclidean topology of Mn×n = Rn×n. One can do it by using the well
known matrix norm ‖A‖M = {sup ‖Ax‖

∣∣ ‖x‖ ≤ 1} or by estimating
the Euclidean norm using the inequalities

‖A‖ ≤ n2 max
i,j
|Aij|

and

[Ap]ij ≤ (n ·max
i,j
|Aij|)p.

Example 30.5. Let G = SO2(R) be the greoup of rotations of the
plane R2, consisting of the toation matrices[

cos θ − sin θ
sin θ cos θ

]
, θ ∈ R.

A local parametrization for the smooth manifold SO2(R) is ϕ : R→

M2×2 ∼ R4 : θ 7→
[
cos θ − sin θ
sin θ cos θ

]
. In particular 0

ϕ7→ 1, so the tangent

plane of SO2(R) at the neutral element 1 can be calculated from the
derivative of the local parametrization at 0. It is the linear mapping

d0ϕ : R→ R4 ∼M2×2 : λ 7→ λ ·
[
0 −1
1 0

]
=

[
0 −λ
λ 0

]
,

so the tangent space so2(R) is

T0(SO2(R)) = d0ϕ(R) =

{[
0 −λ
λ 0

] ∣∣ λ ∈ R
}
∼ R.

Because SO2(R) is commutative, the lie bracket is zero. The classical
exponential mapping exp : so2(R) → M2×2 maps the matrix A =
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0 −λ
λ 0

]
∈ so2(R) to

1 +

[
0 −λ
λ 0

]
+1

2

[
0 −λ
λ 0

]2

+ 1
3!

[
0 −λ
λ 0

]3

+ 1
4!

[
0 −λ
λ 0

]4

+ . . .

= 1 +λ

[
0 −1
1 0

]
+1

2
λ2

[
0 −1
1 0

]2

+ 1
3!
λ3

[
0 −1
1 0

]3

+ 1
4!
λ4

[
0 −1
1 0

]4

+ . . .

= 1 +λ

[
0 −1
1 0

]
+1

2
λ2

[
−1 0
0 −1

]
+ 1

3!
λ3

[
0 1
−1 0

]
+ 1

4!
λ4

[
1 0
0 1

]
+ . . .

= 1 +λ

[
0 −1
1 0

]
−1

2
λ21 − 1

3!
λ3

[
0 −1
1 0

]
+ 1

4!
λ41 + . . .

=(1− λ3

3!
+ . . . )1 + (λ− λ2

2!
+ . . . )

[
0 −1
1 0

]
= cosλ1 + sinλ

[
0 −1
1 0

]
=

[
cosλ − sinλ
sinλ cosλ

]
∈ SO2(R).

we observe that the classical exponential mapping at least in this one
case really maps the lie algebra so2(R) of the group SO2(R) to the
group SO2(R) itself. Obviously, it also is smooth and maps the zero

element 0 =

[
0 0
0 0

]
to the neutral element, i.e. the unit matrix. Also,

its derivative at zero is

d0exp =

([
0 −λ
λ 0

]
7→
[

0 −λ
λ 0

])
= Idso2(R),

so it satisfies the preliminary conditions for the exponential mapping.

Like in the previous example, the Lie group is again one-dimensional,
and the exponential mapping does again map sums to products. We
repeat the warning: this is not true for exponential maps in general.

Definition 30.6. (Move to a better place!) In addition to the condi-
tions in ?? the exponential mapping should be natural in the following
sense: (3) If f : G → H is a Lie group homomorphism, then the dia-
gram

G
f→ H

exp ↑ · ↑ exp

G def→ H

is commutative
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31. Vector fields on manifolds

31.1. Introduction. Every homomorphism of a Lie group ρ : G →
H, in particular every representation, has a derivative at the neutral
element, and this derivative d0ρ : G → G is a homomorphism of lie
algebras. In fact every lie algebra homomorphism is the derivative of
some Lie group homomorphism:

If G is a ”concrete” Lie group, same as aa sub-Lie group of GLn(R)
, then the classical exponential mapping is a mapping G → G, and if
T : G → G is a homomorphism of lie algebras, then there exists a Lie
group homomorphism ρ : G→ H such, that T = d0ρ. Since Euclidean
space G is connected, its continuous image exp(G) ⊂ G is connected as
well. Therefore the image of the exponential mapping is contained in
the connected component of the Lie group which contains the neutral
element. It turns out that ifG happens to be simply connected, then the
classical exponential mapping will define a 1-1-correspondence between
representations of the Lie group G and its lie algebra G.

The following Lie groups are simply connected:

(1) {M ∈ GLn(R)
∣∣M is upper diagonal with all diagonal elements

equal to 1.}.
(2) closed Lie subgroups of the above
(3) the neutral element’s connected component in a ny Lie group.
(4) the universal covering group of any Lie group. By this we mean

the following: Tällä tarkoitetaan seuraavaa: Every manifold M
has a unique universal covering space whgich is a manifold P
together with a smooth surjection, the covering map π : P →M
such, that every x ∈M has a neighbourhood U , whose preimage
π1(U) consists of a collection of distinct sets each diffeomorphic
to U :

U =
⋃
i∈I

Ui π
∣∣
Ui

: Ui → U is a diffeomorphism.

The universal covering space of a Lie group can be given the
structure of a Lie group such that π becomes a homomorp-
hism.11.

It is obvious that a Lie group and its universal covering group
have the same lie algebra.

11OK?
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For example (R,+) is a simply connected n Lie group and

π : R → U = SL2(R) : λ 7→
[
cosλ − sinλ
sinλ cosλ

]
is a universal

covering map and a homomorphism. So both of these groups
have the same lie algebra, namely R with the zero bracket.

The following Lie groups are not simply connected:

(1) finite groups — except the trivial group
(2) the rotation group U = SL2(R),
(3) SLn(R),
(4) SLn(C),
(5) On(R) is not even connected (det is 1 in one component, -1 in

the other.)
(6) For n ≥ 3 the connected group SOn(R) is not simply connected.

Its universal covering group is called the spin group and the
covering map is almost injective in the sense that every point
has precisely 2 preimages. We say that the covering group has
2 sheets.

We will now prove that every Lie group has an exponential mapping
G → G which maps representations to representations. The construc-
tion of such an exponential mapping is based on the concept of a vector
field on manifolds and on some theory of differential equations.

31.2. The classical definition of a vector field. We consider smooth
manifolds which need not necessarily be Lie groups.

Definition 31.1. Let M ⊂ Rn be a classical d-udimensional smooth
manifold and x0 = ψ(x) = ψ(x1, . . . , xd) ∈ M , where ψ : B → X is a
local parametrisation; B ⊂ Rd. The tangent space of the manifold M
at a point x0 = ψ(x) is the image space Tx0(M) = dxψ(Rd).

The tangent bundle of the manifold M is the disjoint union of all its
tangent spaces, formally:

TM = {(x, v)
∣∣ x ∈M, v ∈ TxM}.

For the tangent bundle we define the projection mapping

π : TM →M : (x, v) 7→ x,

so for all x ∈M we have π−1(x) = {x} × TxM ∼ TxM . These preima-
ges, same as the individual tangent spaces, are called the fibres of the
tangent bundle TM .



46 KAREN E. SMITH

The tangent bundle is also equipped with the structure of a smooth
manifold. This is done by taking the local trivialisations

ϕT : π−1(U)→ ϕ(U)× Rd

(x, v) 7→ (ϕ(x), dxϕv),

as charts where the ϕ : U → B ⊂ Rd are the charts of the original
manifold M .

PICTURE TO BE DRAWN LATER

Kuva 999: tangenttikimpun lokaali trivialisointi

Example 31.2. The tangent bundle of the circle M = S1 is the cylin-
der S1 ×R with the structure of the product manifold and the projec-
tion map π : S1×R→ S1 : (x, u) 7→ x. A tangent bundle isomorphic to
M ×Rd is called a trivial tangent bundle. so the tangent bundle of the
circle is trivial but we will soon notice that the tangent bundle of the
two dimensional sphere is not. On the other hand, the tangent bundle
of every Lie group is trivial.

Definition 31.3. A vector field on a manifold M is a smooth mapping
X : M → TM , such that π ◦ X = IdM or equivalently ∀x ∈ M :
X(x) ∈ {x} × TxM .

Proposition 31.4. ”You cannot comb the hair on a sphere —
theorem”12 Every vector field on the 2-dimensional sphere S2 = {x ∈
R3
∣∣ ‖x‖ = 1} has a zero point.

Todistus. The proof would lead us too much astray. Consult the litera-
ture. �

Corollary 31.5. The tangent bundle TS2 of the sphere S2 has no glo-
bal frame by which we mean such a pair of vector fields X1, X2, that
X1(x), X2(x) would be a basis for the tangent space TxS2 at each x ∈ S2.

12There are nice videos on Youtube, where this is tried!
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Corollary 31.6. The tangent bundle TS2 of the sphere S2 has no
global trivialisation by which we mean a diffeomorphism f : TS2 →
S2 × R2, with π ◦ f = f ◦ π.

Todistus. It is left as an exercise to prove that the tangent bundle of
a manifold has a global trivialisation if and only if it has a global
frame. �

For example the tangent bundle of the circle S1 i.e. the cylinder is
gobally trivial but the manifold S1 has no atlas consisting of one chart
only.

(CORRECT THE FINNISH TEXT!)

31.3. Left invariant vector fields on a Lie group.

Definition 31.7. A vector field X on a Lie group ryhmän G is left
invariant, if for all g, h ∈ G

dx(mg)X(h) = X(gh),

where m : G→ G : h 7→ gh is multiplication from the left the element
g and dx(mg) : ThG→ TghG is its derivative.

Proposition 31.8. Let v ∈ TeG = G. Now

Xv; g 7→ (g, dx(mg)v)

is a left invariant vector field, where m : G → G : h 7→ gh is mul-
tiplication from the left by the element g and dx(mg) : ThG→ TghG is
its derivative.

Todistus. The mapping Xv is a vector field, since it is a composition
of smooth mappings, hence a smooth mapping X : M → TM and
evidently X(x) ∈ {x} × TxM for all x ∈ M . Left invariance follows
from the chain rule:

mgh : G
mh−→ G

mg−→ G
| | |

demgh : TeG
demh−→ ThG

demg−→ TghG

.

�

If v 6= 0, the vector field Xv has no zeros, in particular it — of course
— cannot be the zero vector field, so v 7→ Xv is a linear injection,
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in fact a bijection TeG →{left invariant vector fields of G}. By this
bijection we can carry over the lie algebra structure of TeG to {left
invariant vector fields of G :}.

By this construction we have been able to identify a single tangent
vector X ∈ TeG with a vector field: The correspondence is

X 7→ (g 7→ demgX).

Having carried over the vector space structure and the lie bracket
from X ∈ TeG we have made the set of left invariant vector fields
into a lie algebra. It is worth while to notice that the vector space
operations coincide with the ”natural pointwise” operations on general
vector fields: if X(x) = (x, v) and Y (x) = (x,w), then (αX+βY )(x) =
(x, αv + βw). This is so, because the derivative of left multiplication
mg is a linear isomorphism TeG → TgG. By this isomorphism, we can
– of course — also transfer the basis of TeG to TeG to TmG or to {left
invariant vector fields of G :}, so every Lie group has a global frame.

Remark 31.9. We transferred the lie bracket by the linear isomorphism
TeG → TmG, but in fact it is possible, and common, to define a lie
bracket of vector fields on any manifold. It turns out that this is not in
conflict with our definition: the lie algebra {left invariant vector fields
of G :} is a sub lie algebra of {all vector fields on G} with the more
general lie bracket.

Let us also notice that the mapping

g 7→ (X 7→ demgX)

is a representation of G in the space of its own left invariant vector
fields which we now have completely identified with the lie algebra G.

This can be generalised: If a Lie group G acts as diffeomorphisms
on any manifold M , then G acts linearly in the space V KM of all
vector fields over M which is a representation of G. The representation
is defined by the following construction: Let X : M → TM : x 7→
(x,X(x)) be a vector field and take g ∈ G. The vector field gX is the
mapping

y 7→ (y, dxmgX(x)),

where we have denoted the action of g ∈ G in M by g and x = g−1y.

31.4. The general definition of the exponential mapping. Since
not all Lie groups are matrix groups, and some are matrix groups only
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by cumbersome identifications, there is need to re-define the exponen-
tial mapping in an abstract setting. exp should be a mapping from the
lie algebra G of a general Lie group G to the Lie group G itself and
have the following properties:

(1) 0 7→ e
(2) d0 exp = IdG : G → G = T0(G)
(3) for all X ∈ G the restriction exp

∣∣
RX is a group homomorphism

RX ∼ R→ G, in other words for all λ, µ ∈ R and X ∈ G

exp((λ+ µ)X) = exp(λX) · exp(µX).

Condition (3) is often expressed by saying that the restriction
exp
∣∣
RX is a one parameter subgroup ofG.

Proposition 31.10. there exists a unique mapping satisfying the con-
ditions (1)-(3).

Todistus. we prove the proposition by giving a construction in two
steps:

(Step 1) Interprete the elements X of the lie algebra G as left inva-
riant vector spaces on G. This was done above.

(Step 2) From the theory of differential equations, adopt the fact
that any everywhere non-zero vector field has a flow consisting of its
integral curves. Roughly this means that it is possible to start at any
point p on the manifold and then ”follow the vectors” interpreted as
”velocities” for some time. If it is possible to follow a given vector field
everywhere for a a given time, say time 1, this will create a smooth
map from the manifold to itself, and the procedure can be repeated
generating a flow that ”goes on forever”. Let us do this in detail:

Define an integral curve of a given vector field X in a neighbourhood
U of a given point p ∈ M to be a smooth curve γX : ] − ε, ε[→ M ,
mapping 0 7→ p and having derivatives

dtγX : R→ Tp(M) : s 7→ (γ(t), sX(γ(t)),

in particular

′′1
dtγ7→ X ∈ Tγ(t)

′′.
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Such an integral curve always exists and is unique on a small enough
interval ] − ε, ε[, but for a general vector field the interval cannot be
chosen to be large let alone all of R.13

Let us sketch the next step: In a Lie group integral curves of left
invariant vector fields can be extended to all of R and becomes a group
homomorphism γ : (R,+) → G. This is done by ”translating” in G.
Before doing this, we use the result to finish the construction of the
exponential mapping: We define it to be

exp : G → G : X 7→ γX(1).

We have to notice that this mapping obviously satisfies the conditions
(1) . . . (3) and is, by uniqueness of the integral curves, the only mapping
doing so.

What is left of the construction is the promised extension of the in-
tegral curve of a left invariant vector field. Let the integral curve be
defined on ] − ε, ε[- By uniqueness of the integral curves the ”homo-
morphism formula” γX(s + t) = γX(s) · γX(t) holds at least for all
|t| ≤ ε

2
and |s| ≤ ε

2
, since for fixed s both sides are, as functions of t,

integral curves of the same vector field X in the neighbourhood of the
same point γX(s). Let us verify this in detail:

Introduce some short hand notation: γ = γX , α(t) = γX(s + t)
and β(t) = γX(s) · γX(t). Obviously both have the same initial value
α(0) = β(0) = γX(s). furthermore both are integral curves of the vector
field X, since by the definition ?? of an integral curve

dtγ : R→ Tγ(t)(M) : r 7→ rX(γ(t))

which, expressed as a formula for the basis vector 1 of R is equivalent
to:

dtγ : R→ Tγ(t)(M) : 1 7→ X(γ(t))

and gives for α:

dtα :R Id=dt(r 7→s+r)−→ R ds+t(γ)−→ Tα(t)G

1 7→ dt+s(γ) = X(γ(s+ t)) = X(α(t)).

and for β = mγ(s) ◦ γ:

dtβ :R dtγ−→ Tγ(t)(G)
dγ(t)(mγ(s))−→ Tβ(t)(G)

1 7→ X(γ(t)) 7→ dγ(t)(mγ(s))(X(γ(t)))
vas.inv!

= X(γ(s) · γ(t)) = X(β(t)).

13Counterexample: a constant vector field in an open circle ⊂ R2.
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Define for all r ∈]− 2ε, 2ε[

γX(r) = γX( r
2

+ r
2
) = γX( r

2
) · γX( r

2
).

We have already proved that this extension is not anywhere in conflict
with the original definition. Also, it should be clear (exercise?) that the
extended curve γX is an integral curve of X with the same initial point.
The continuation process can be repeated to find an integral curve γX
defined on ]− 2nε, 2nε[ and all in all in R.

�


