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17. Characters

We now understand, in a sense, all complex representations of any
finite abelian group, as well as the simplest non-abelian group: they
are all direct sums of irreducible representations, and we have explicitly
identified the finite list of these. On the other hand, this doesn’t help us
to find a decomposition of a given representation, or even to recognize
when two given representations (say, of an abelian group or S3) are
isomorphic.

Fortunately, there is a very effective technique for decomposing any
given finite dimensional representation into its irreducible components.
For example, we can tell at a glance—or at least easily program a
computer to—whether two very large dimensional representations of a
finite group are isomorphic or not. The secret is character theory.

In our analysis of the representations of S3, the key was to study the
eigenvalues of the actions of individual elements of S3. This is the star-
ting point of character theory. Finding individual eigenvalues, however,
is difficult. Luckily, it is sufficient to consider their sum, the trace, which
is much easier to compute.

Definition 17.1. Let φ : V → V be a linear transformation of a finite
dimensional vector space. The trace of φ is the sum of the diagonal
entries a11 + a22 + · · · + ann of a matrix representing φ in any fixed
basis for V . This is independent of the choice of basis, and can also be
defined as sum of the roots of its characteristic polynomial, counting
multiplicity.

Definition 17.2. Fix a finite dimensional representation V of a group
G, say, over C. The character of the representation is the complex
valued function

χV : G→ C
1



2 KAREN E. SMITH

g 7→ trace of g acting on V.

Of course if V is defined over R or some other field, then the character
takes values in R or whatever ground field.

The character of a representation is easy to compute. If G acts on
an n-dimensional space V , we write each element g as an n×n matrix
according to its action expressed in some convenient basis, then sum up
the diagonal elements of the matrix for g to get χV (g). For example, the
trace of the identity map of an n-dimensional vector space is the trace
of the n × n identity matrix, or n. Thus, for any group, the character
of the trivial representation of dimension n is the constant function
sending each element of G to n. More generally, χV (e) = dimV for any
finite dimensional representation V of any group.

We often write the values of the character χV as a “vector”whose
coordinates are indexed by the elements of G.

χV := (tr(g1), tr(g2), . . . , tr(gr)),

where r = |G|. For example, the character of the n-dimensional trivial
representation of G can be written (n, n, . . . , n) (where the length of
the vector here is the order of G). Similarly, the the character of the
tautological representation of D4 is

(2, 0,−2, 0, 0, 0, 0, 0).

This is simply the list of the traces of the transformations {e, r1, r2, r3, H,A, V,D}
of symmetries of the square acting on R2 (Cf. the list of matrices repre-
senting these symmetries in Example ??.)

17.1. The fixed point theorem. The character of any permutation
representation (see ??) is easy to compute. Suppose a group G acts on
a finite set X, and let VX be the associated permutation representation.
So VX is a vector space with basis indexed by the elements of X and
G acts by permuting the basis vectors according to its action on the
indices. In this case, the character is

χVX
(g) = the number of elements of X fixed by g.

Indeed, if we imagine the basis {ex}x∈X written as column vectors in-
dexed by x ∈ X, the action of g is simply permuting them in some way,
and the corresponding matrix is the corresponding (inverse) permuta-
tion of the columns of the identity matrix. In particular, each diagonal
entry is either 0 or 1. It is 1 if and only if egx = ex— that is, if and
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only if g fixes x—and zero otherwise. Thus the trace of the action of g
on VX is the number of elements of x fixed by g.

17.2. The character of the regular representation. Let R be the
regular representation of a finite group G—which is to say, the per-
mutation representation of G induced by the action of G on itself by
left multiplication. The character χR can be computed using the fixed
point theorem. Indeed, since left multiplication by a non-identity ele-
ment fixes no element of G, the trace of every g 6= e is zero. On the
other hand, of course e acts by the identity on this vector space of
dimension G. Thus

χR = (|G|, 0, 0, . . . , 0).

17.3. Characters of S3. Let us compute the characters of the three
irreducible representations of S3 identified in the last lecture.

The trivial representation of S3 is one dimensional and takes the
value 1 for each of the six elements of S3. Its character is therefore

χE : G→ C; g 7→ 1; or (1, 1, 1, 1, 1, 1).

The alternating representation is also one dimensional, but takes the
value 1 on the even permutations (e, (123) and 132), and −1 on the
odd permutations (the transpositions (12), (23) and (13)). Thus

χA : (1,−1,−1,−1, 1, 1).

The character of the standard representation could be found by wri-
ting out the matrix for the action of each of the six elements of S3,
with respect to some basis, perhaps the one already identified in ??.
However, we prefer to make use of the following helpful fact:

Proposition 17.3. Let V and W be finite dimensional representations
of a group G. Then

χV⊕W = χV + χW

as functions on G.

Now, because the permutation representation of S3 decomposes as a
sum of the trivial and the standard representations, we can compute
the character of the standard representation using Proposition 18.3.
This has the advantage of being easy: the matrices for the permutation
action are simply the permutation matrices, so we see immediately that
the identity element has trace 3, each of the transpositions has trace 1,
and each of the 3-cycles has trace 0. Subtracting the character of the
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trivial representation, we conclude that the standard representation
has character

χW = (2, 0, 0, 0,−1,−1).

This information can be displayed in a character table

e (12) (13) (23) (123) (132)
trivial 1 1 1 1 1 1

alternating 1 −1 −1 −1 1 1
standard 2 0 0 0 −1 −1

whose rows are the characters of the prescribed representations. The
character of any complex representation V of S3 can be obtained from
these three, by decomposing V into irreducibles V = Ea ⊕ Ab ⊕W c,
and then using Proposition 18.3 to conclude that

χV = aχE + bχA + cχW .

18. Statements of the main theorems of character theory

Obviously, isomorphic representations have the same character, but
remarkably, the character completely determines the representation up
to isomorphism, at least over C:

Theorem 18.1. Two finite dimensional complex representations of a
finite group G are isomorphic if and only if they have the same charac-
ter.

Indeed, much more is true. Before stating general theorems, we first
“discover”them by taking a close look at the characters of S3.

First: note that the rows of the character table for S3 are all ort-
hogonal with respect to the standard (Hermitian) inner product. Also,

each has length
√
|S3|. In other words, the characters of the irreducible

representations are orthonormal with respect to the inner product on
the space of C-valued functions of G

(1) (α, β) =
1

|G|
∑
g∈G

α(g)β(g).

Amazingly, this is a general feature of the characters of any finite group!

Theorem 18.2. For any finite group G, the characters for the irre-
ducible complex representations are orthonormal under the inner pro-
duct (1) on the space of all C-valued functions of G.
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Put differently, if χV and χW are characters of irreducible represen-
tations, then (χV , χW ) is either 1 or 0, depending on whether V ∼= W
or not.

Theorem 19.2 already implies that there are finitely many isomorp-
hism classes of irreducible representations. Orthonormal vectors are in-
dependent, so clearly there are at most |G| irreducible representations
for G.

In fact, there is a better bound on the number of irreducible represen-
tations a finite group. Note another interesting feature of the character
table of S3: each character takes the same value on all transpositions,
and also takes the same value on each of the three-cycle. This, too, is
a general feature of the character of any finite group.

Proposition 18.3. The character of a representation is constant on
conjugacy classes of G. That is, for any finite dimensional representa-
tion V of a group G,

χV (hgh−1) = χV (g)

for all g, h ∈ G.

Todistus. This is more or less obvious, since the action of h can be
considered a change of basis for V . Since the trace does not depend on
the basis—that is, conjugate (similar) matrices have the same trace—
the character must be constant on conjugacy classes of G. �

For example, S3 has three conjugacy classes—the identity, the trans-
positions, and the three-cycles—and we have seen that the character
of any representation is constant on each of these.

To avoid redundancy, we usually think of the character of a repre-
sentation as a function the set of conjugacy classes of G. For example,
the character table of S3 could be compactified to

e (12) (123)
trivial 1 1 1

alternating 1 −1 1
standard 2 0 −1

Here the elements e, (12) and (123) are representatives for their res-
pective conjugacy classes. Some authors include another row above the
first row to indicate the number of elements in each conjugacy class;
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this is helpful in computing the inner product, since that sum is still
taken over all the elements of G.

We postpone the proof of Theorem 19.2 in order to summarize some
of its amazing consequences.

Corollary 18.4. For finite dimensional complex representations of a
finite group G we have:

(1) There are at most t irreducible representations of G, where t is
the number of conjugacy classes of G.

(2) The multiplicity of an irreducible representation W in a repre-
sentation V is (χW , χV ).

(3) Each representation is determined (up to isomorphism) by its
character.

(4) A representation V is irreducible if and only if (χV , χV ) = 1.

Remark 18.5. In fact, the characters of the irreducible representations
actually span the t-dimensional vector space of all functions on G cons-
tant on conjugacy classes, so there are exactly t distinct isomorphism
classes of irreducible representations of G. We will outline the proof of
this in the exercises.

Proof of Corollary. (1). The characters of the different representations
of G live in the t-dimensional space of functions on G which are cons-
tant on conjugacy classes (for example, by listing the values at each
conjugacy class, we get a “vector”of t complex numbers). Since the
characters of the irreducible representations are orthonormal, they are
independent, and hence there can be at most t of them. This means
there are at most t isomorphism classes of irreducible representations.

(2). Now, suppose V ∼= W a1
1 ⊕ · · · ⊕ W at

t is a decomposition of V
into irreducibles. Using Proposition 18.3, χV = a1χW1 + · · · + atχWt .
So using the bilinearity of the inner product and the orthonormality of
the χWi

, we conclude that

(χV , χWi
) = ai.

(3). Suppose V and U are two representations with the same charac-
ter. Decomposing each,

V ∼= W a1
1 ⊕ · · · ⊕W at

t , U ∼= W b1
1 ⊕ · · · ⊕W bt

t

so that if χV = χU , then

a1χW1 + · · ·+ atχWt = b1χW1 + · · ·+ btχWt .



GROUPS AND THEIR REPRESENTATIONS - THIRD PILE 7

But now because the χWi
are independent, we see that ai = bi for each

i, and so V ∼= U .

(4). Decompose V into irreducibles W a1
1 ⊕ · · · ⊕W at

t , so that χV =
a1χW1 + · · ·+ atχWt . Then using the orthonormality of the χWi

, we see
that

(χV , χV ) = a2
1 + a2

2 + · · ·+ a2
t .

Since the ai are all non-negative integers, we see that (χV , χV ) = 1 if
and only if exactly one of the ai is 1, and the others are zero, that is,
if and only V is irreducible. �

19. Using Character theory to decompose
representations.

We now have a very powerful tool1 for analyzing complex represen-
tations of a finite group. For example, let us decompose the regular
representation R of S3 into its irreducible components. (Recall that
the regular representation of S3 is the six-dimensional representation
with a basis indexed by the elements of S3, where S3 acts by left mul-
tiplication on these indices.) We have proved that the only irreducible
representations of S3 are the trivial E, the alternating A and the stan-
dard W . Thus we have a decomposition

R ∼= Ea ⊕ Ab ⊕W c

for some non-negative integers a, b and c. This produces the following
relation on the characters:

χR = aχE + bχA + cχW .

The character of the regular representation is (6, 0, 0), and easy com-
putation carried out in 18.2. Thus we have a system of linear equations
in three unkowns,

(6, 0, 0) = a(1, 1, 1) + b(1,−1, 1) + c(2, 0,−1)

which is easy to solve: (a, b, c) = (1, 1, 2). So the regular representation
decomposes as

R ∼= E ⊕ A⊕W 2.

1though we haven’t proven it yet
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19.1. The decomposition of the regular representation. A simi-
larly beautiful picture emerges for the regular representation of any
finite group:

Corollary 19.1. The regular representation R of any finite group G
decomposes (over C) as

R ∼= W dimW1
1 ⊕W dimW2

2 ⊕ · · · ⊕W dimWt
t

with every irreducible representation Wi appearing exactly dimWi ti-
mes.

In particular,

Corollary 19.2. For any finite group G

(2) |G| =
∑
Wi

(dimWi)
2,

where the sum is taken over the (isomorphism classes of) irreducible
complex representations of G.

Todistus. We know that

R ∼= W a1
1 ⊕W a2

2 ⊕ · · · ⊕W at
t

where the Wi range through all the irreducible representations of G,
and the ai are some non-negative integers. We have already computed
that χR = (|G|, 0, 0, . . . , 0) (see Example 18.2), so Corollary 19.4 (2),
we have

ai = (χWi
, χR) =

1

|G|
∑
g∈G

χWi
(g)χR(g) =

1

|G|
χWi

(e)|G| = dimWi.

�

Formula (2) can be very helpful in unraveling the mysteries of the
representations of a particular group. For example,

Exercise 19.3. Describe all the irreducible complex representations of
D4.

Solution: The groupD4 has exactly five conjuagy classes: {I}, {r2}, {r1, r3}, {H,V }
and {A,D}. Therefore D4 has at most five irreducible representations.
We have already found three in Example ??: the trivial, the tautolo-
gical, and the one we called L, where r1 acts by -1 and A acts by 1.
These have dimensions 1, 2, and 1, respectively. (To verify that the
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tautological representation is irreducible over C—we checked this on-
ly over R— we can observe that its character is (2,−2, 0, 0, 0, 0, 0, 0),
which indeed has length 1 in the inner product.) By formula (2), we
see that the as-yet-unidentified representations must have dimensions
whose squares sum to 2. This means that there must be precisely two
more irreducible representations of D4, both of dimension one. To find
these, we must consider group homomorphisms

D4 → GL(C) = C∗.

The trivial homomorphism gives the trivial representation, and the
homomorphism sending generators r1 and A to -1 and 1, respective-
ly, defines L. We also get well-defined homomorphisms φ defined by
φ(A) = −1 and φ(r1) = 1, and ψ defined by ψ(A) = ψ(r1) = −1. The-
se give two more distinct representations of D4. (This last one can be
viewed as the pull-back of the alternating representation of S4 to the
subgroup D4.)

Exercise 19.4. For any finite dimensional representations V and W
of a finite group G, show

(1) χV⊗W = χV · χW
(2) χV ∗ = 1

χV
. In particular, over C, χV ∗ = χV , the complex conju-

gate.
(3) χHomC(V,W ) = χV χW .

20. The Proof of orthonormality

20.1. Another nice property of the character. Let V be any finite
dimensional (real or complex) representation of a finite group G. The
trivial part of V—that is, the sub-representation V G where G acts
trivially—can be split off from V using the projection

π : V → V

v 7→ 1

|G|
∑
g∈G

g · v.

The linear map π is easily seen to be a homomorphism ofG-representations
with image V G. Because π is the identity on V G and zero on its comple-
ment, the trace of π is simply the dimension of V G. We conclude that

dimV G = trace π =
1

|G|
∑
g∈G

trace of g acting on V =
1

|G|
∑
g∈G

χV (g).
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In particular, if V is irreducible but not trivial, we have V G = 0, so we
conclude

Proposition 20.1. For finite dimensional complex representations of
a finite group G

(1) The sum of the values of the character of a non-trivial irre-
ducible representation is zero.

(2) For any representation V , the multiplicity of the trivial repre-
sentation in a decomposition into irreducibles is

1

|G|
∑
g∈G

χV (g).

Proof of Theorem 19.2. Let W and V be irreducible complex represen-
tations of a finite group G. We want to show that

(χW , χV ) = 1 or 0,

depending on whether V ∼= W or not. Writing out the meaning of this,
we want to show that

1

|G|
∑
g∈G

χW (g)χV (g) = 1 or 0,

depending on whether V ∼= W or not. Taking a clue from Exercise 20.4,
we consider

χHomC(V,W ) = χV ∗ ⊗ χW ,
and observe that

(χW , χV ) :=
1

|G|
∑
g∈G

χW (g)χV (g) =
1

|G|
∑
g∈G

χHomC(V,W )(g),

which, according to Proposition 21.1 should be equal to the multiplicity
of the trivial representation in HomC(V,W ). How can we compute this
multiplicity?

20.2. The representation HomC(V,W ). Let V and W be represen-
tations of G. The vector space HomC(V,W ) has a natural structure of
a representation of G under the action:

g · φ : V → W

v 7→ g · φ(g−1 · v).

TheG-linear homomorphisms are precisely those linear maps in HomC(V,W )
on which g acts trivially. (Prove it!) In particular, the trivial part of
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HomC(V,W )—that is, the sub-representation of HomC(V,W ) on which
G acts trivially–is precisely the space HomG(V,W ) of G-representation
homormorphisms.

Now, Schur’s lemma tells us that for (complex) irreducible represen-
tations W and V ,

dim HomG(V,W ) = 1 if V ∼= W ; 0 if V � W,

so that multiplicity of the trivial representation in HomC(V,W ) is equal
to one or zero, depending on whether V ∼= W or not. The proof of
Theorem 19.2 is complete. �

Remark 20.2. It is not much harder to show that the characters of the
irreducible representations span the space of functions constant on con-
jugacy classes, which is to say, they form an orthonormal basis. Howe-
ver, since the main conclusions follow already from the orthonormality,
we relegate this stronger statement to the exercises.

Exercise 20.3. Fix a finite group G. Consider the vector space FG
of all C-valued functions on G, and the subspace C of those that are
constant on conjugacy classes.

(1) Show that α ∈ FG is constant of conjugacy classes if and only
if the map

φα,V : V → V ; v 7→
∑
g∈G

α(g)g · v

is G-linear for all complex representations V .
(2) Show that the trace of φα,V is (α, χV ∗) for all α ∈ F .
(3) Show if (α, χV ∗) = 0 for some irreducible representation V and

α ∈ C, then φα,V is the zero map.
(4) Show that if α ∈ C is non-zero, then φα,R is not zero, where R

is the regular representation.
(5) Conclude that the characters of irreducible representations span
C.

21. Representations of Sn

21.1. Conjugacy in Sn. Recall that every permutation in Sn can be
written, uniquely up to order, as a composition of disjoint cycles σ1 ◦
σ2 ◦ · · · ◦ σt, where here we even list the 1-cycles (though we ealier
agreed that sometimes we drop them from the notation). Say that σi is
a ki-cycle, and that we have listed the cycles so that k1 ≥ k2 ≥ . . . kt.
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Note that the cycles (including the 1-cycles) give a perfect partition of
the set of n elements into t disjoint sets whose cardinalities are ki.

Definition 21.1. The cycle type of σ is the partition

[k1k2 . . . kt] := {k1 ≥ k2 ≥ · · · ≥ kt ≥ 1 |
∑

ki = n}

of n, where the k1 are a (weakly) decreasing list of positive natural
numbers summing to n.

For example the cycle type of the permutation (1457)(368) in S8

is [4, 3, 1] because this permutation decomposes as the composition of
the cycles (1457), (368) and (2), of lengths 4, 3, and 1, respectively. The
permutation (1234)(567) has the same cycle type.

Exercise 21.2. Two permutations in Sn are conjugate if and only if
they have the same cycle type.

The exercise is quite easy if one notes that conjugation can be thought
of as a “change of labeling”for the transformations of the set of n-
objects. For example, conjugating by the transposition (12) will in-
terchange the roles of 1 and 2 in the permutation of {1, 2, . . . , n}. For
example, the permutations (123)(456) and (623)(451) are conjugate to
each other via conjugation by (16):

(16)(123)(456)(16) = (623)(451).

This makes it easy to list the conjugacy classes of Sn: there is exactly
one for each distinct way of partitioning a set of n objects—that is, they
are indexed by the partitions of n.

For example, there are exactly three conjugacy classes S3, corres-
ponding to the partitions [3], [2, 1] and [1, 1, 1]. These are the classes
of 3-cycles {(123), (132)}, of transpositions {(12), (13), (23)}, and the
identity, respectively.

Likewise, there are five conjugacy classes in S4, corresponding to the
partitions [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1]. These correspond to
the 4-cycles, the 3-cycles, the pairs of transpositions, the transpositions,
and the identity elements, respectively.


