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Problem 1: By definition, a plane lattice is a subgroup Λ of R2 generated by two
linearly independent vectors. For example, the lattice generated by (1, 0) and (0, 1) is
the subgroup Z2 of points in the plane with integer coefficients. The crystal class of
a lattice Λ is the symmetry group of the lattice1—that is, the subgroup of the group
of orthogonal transformations O(R2) of the plane (with respect to the standard inner
product) which preserve the lattice.

(1) Show that all plane lattices are isomorphic as abstract groups.
(2) Show that the crystal class of a plane lattice is a finite group.
(3) Find lattices which have crystal classes isomorphic to each of the following

groups: Z2,Z2 × Z2, D3, D4, D6. (In fact, these are all the crystal classes of
plane lattices—it is not beyond the reach of an ambitious student to prove
this!).

(4) Two lattices are equivalent if there is an orthogonal change of coordinates
of R2 which transforms one to the other. Show that equivalent lattices have
isomorphic crystal classes.

(5) A space lattice and its crystal class are defined analogously. How many distinct
space crystal classes can you find?

Problem 2. Rephrase the definition of a topology on a space X in terms of the closed
sets (meaning the compliments of open sets).

Problem 3: Zariski Topology. For any collection of polynomials {fλ}{λ∈Λ} in n-
variables with real coefficients, define a set V({fλ}) to be the set of points p in Rn

satisfying fλ(p) = 0 for all λ ∈ Λ.

(1) Show that Rn has the structure of a topological space whose closed sets are
the V({fλ}).

(2) Show that any two non-empty open sets (in the Z-top) have non-empty inter-
section.

(3) Prove that there is a no self-bjiection of Rn which transforms the Zariski
topology into the Euclidean topology.

(4) Explain how to define a Zariski topology on the set kn where k is any field.
(5) Prove that the Zariski topology on kn is discrete if and only if k is finite.

KÄÄNNÄ

1Since the lattice is defined as a group, these transformations must preserve the group structure—
in particular, they must take the origin to the origin—we don’t allow affine shifts of the lattice.
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Problem 4: The general linear group GLn.

(1) Prove that the multiplication map GLn(R)×GLn(R)→ GLn(R) is a smooth
map between open subsets of Euclidean space.

(2) Prove that the inverse map GLn(R)→ GLn(R) sending g to g−1 is a smooth
map between open subsets of Euclidean space.

(3) Prove that the multiplication map GLn(C) × GLn(C) → GLn(C) is a holo-
morphic map between open subsets of complex Euclidean space. Prove that
the inverse map GLn(C) → GLn(C) sending g to g−1 is a holomorphic map
between open subsets of complex Euclidean space.

(4) Conclude that GLn(R) (respectively GLn(C)) is a real (respectively, complex)
Lie group. What is its dimension in each case?

Problem 5: Lorentz group. Fix a non-degenerate symmetric bilinear form Q on
an n-dimensional real vector space V .

(1) Show that the linear transformations φ ∈ GL(V ) that respect Q (meaning
Q(φ(v), φ(w)) = Q(v, w) for all vectors v, w in V ) form a subgroup of GL(V ).
We denote this group SOQ(V ).

(2) Show that if Q is positive definite, then SOQ(V ) is isomorphic to the group
SOn(R) of n × n real matrices whose columns are orthonormal. (This is the
case where the signature of Q is (n, 0)).

(3) Show that the groups SOQ(V ) and SOQ′(V ) are isomorphic if the signatu-
res of Q and Q′ are the same. We use the notation SO(k, l)) to denote the
isomorphism class of groups SOQ(V ) where the signature of Q is (k, l). The
Lorentz group is the special case where the signature is (3, 1).

(4) Prove that SO(3, 1) is a Lie group. What is its dimension? It is not much
harder to prove that SO(k, l) is a Lie group in general. What is its dimension?


