MATEMATIIKAN JA TILASTOTIETEEN LAITOS

JYVÄSKYLÄN YLIOPISTO

Undergraduate Representation Theory 2010 Exercise Set 5

author Karen Smith

space-time coordinates monday Feb. 15 at 12-14 in MaA 203

Reading: Review of linear algebra if needed (construction of tensor products, etc.)

Problem 1: The permutation representation of S_3 **.** Consider the permutation representation of S_3 acting by permuting the elements of a basis for \mathbb{C}^3 .

- (1) Show that the span of (1, 1, 1) is a subrepresentation of S_3 .
- (2) Explicitly decompose \mathbb{C}^3 into irreducible representations.

Problem 2: Which of the following representations are irreducible?

- (1) The tautological representation of D_n on \mathbb{R}^2 ?
- (2) The action of U(1) on \mathbb{C} by multiplication?
- (3) The tautological action of GL(V) on V over a field F.
- (4) The group homomorphism $(\mathbb{Q}, +) \to GL(\mathbb{Q}^2)$ given by $\lambda \mapsto \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.
- (5) The permutation representation of S_n on \mathbb{C}^n .
- (6) The regular representation of \mathbb{Z}_4 .
- (7) The action of $SL_2(\mathbb{R})$ on the space of all 2×2 real matrices by left multiplication.
- (8) The action of $SL_2(\mathbb{R})$ on space of all 2×2 real matrices by conjugation.
- (9) The representation of GL(V) induced on $\Lambda^{\dim V}$ by the tautological action of GL(V) on V.

Problem 3: Explicitly decompose the following representations into irreducibles.

- (1) The regular representation of $G = \mathbb{Z}_4$.
- (2) The regular representation of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (3) The representation on \mathbb{Z}_4 on \mathbb{R}^2 induced by restricting the tautological representation of D_4 to the subgroup of rotations, identified with \mathbb{Z}_4 by sending r_i to \overline{i} .

Can you make any generalizations?

Problem 4. Let G be a finite group, and let G^* be the set of all complex valued functions on G.

- (1) Show that G^* has a natural \mathbb{C} -vector space structure.
- (2) Show G^* has a natural G-representation structure defined by $g \cdot \phi(h) = \phi(hg^{-1})$.
- (3) Prove that G^* is isomorphic to R, the regular representation of G (as a representation of G). (Hint: think of e_g as the characteristic function of $g \in G$.)

KÄÄNNÄ

Problem 5: Homomorphisms of Representations. Let G be a group acting on finite dimensional (complex, say) vector spaces V and W.

- (1) Show that G acts on the vector space of linear maps $Hom_{\mathbb{C}}(V, W)$ by $g \cdot \phi(v) = g \cdot \phi(g^{-1} \cdot v)$ for all $g \in G$ and all $v \in V$.
- (2) Explain why the set of all G-representation homomorphisms from V to W can be viewed as a subset of the set $Hom_{\mathbb{C}}(V, W)$ of vector space maps from V to W. Is it is a subvector space?
- (3) Show that the set of G-representations homomorphisms of V to W can indentified with the set of linear transformations in $Hom_{\mathbb{C}}(V, W)$ fixed by every element of G under the action described in (1)..