space-time coordinates monday Feb. 15 at 12-14 in MaA 203
Reading: Review of linear algebra if needed (construction of tensor products, etc.)

Problem 1: The permutation representation of S_{3}. Consider the permutation representation of S_{3} acting by permuting the elements of a basis for \mathbb{C}^{3}.
(1) Show that the span of $(1,1,1)$ is a subrepresentation of S_{3}.
(2) Explicitly decompose \mathbb{C}^{3} into irreducible representations.

Problem 2: Which of the following representations are irreducible?
(1) The tautological representation of D_{n} on \mathbb{R}^{2} ?
(2) The action of $U(1)$ on \mathbb{C} by multiplication?
(3) The tautological action of $G L(V)$ on V over a field F.
(4) The group homormorphism $(\mathbb{Q},+) \rightarrow G L\left(\mathbb{Q}^{2}\right)$ given by $\lambda \mapsto\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)$.
(5) The permutation representation of S_{n} on \mathbb{C}^{n}.
(6) The regular representation of \mathbb{Z}_{4}.
(7) The action of $S L_{2}(\mathbb{R})$ on the space of all 2×2 real matrices by left multiplication.
(8) The action of $S L_{2}(\mathbb{R})$ on space of all 2×2 real matrices by conjugation.
(9) The representation of $G L(V)$ induced on $\Lambda^{\operatorname{dim} V}$ by the tautological action of $G L(V)$ on V.

Problem 3: Explicitly decompose the following representations into irreducibles.
(1) The regular representation of $G=\mathbb{Z}_{4}$.
(2) The regular representation of $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(3) The representation on \mathbb{Z}_{4} on \mathbb{R}^{2} induced by restricting the tautological representation of D_{4} to the subgroup of rotations, identified with \mathbb{Z}_{4} by sending r_{i} to \bar{i}.
Can you make any generalizations?
Problem 4. Let G be a finite group, and let G^{*} be the set of all complex valued functions on G.
(1) Show that G^{*} has a natural \mathbb{C}-vector space structure.
(2) Show G^{*} has a natural G-representation structure defined by $g \cdot \phi(h)=$ $\phi\left(h g^{-1}\right)$.
(3) Prove that G^{*} is isomorphic to R, the regular representation of G (as a representation of G). (Hint: think of e_{g} as the characteristic function of $g \in G$.)
KÄÄNNÄ

Problem 5: Homomorphisms of Representations. Let G be a group acting on finite dimensional (complex, say) vector spaces V and W.
(1) Show that G acts on the vector space of linear maps $\operatorname{Hom}_{\mathbb{C}}(V, W)$ by $g \cdot \phi(v)=$ $g \cdot \phi\left(g^{-1} \cdot v\right)$ for all $g \in G$ and all $v \in V$.
(2) Explain why the set of all G-representation homomorphisms from V to W can be viewed as a subset of the set $\operatorname{Hom}_{\mathbb{C}}(V, W)$ of vector space maps from V to W. Is it is a subvector space?
(3) Show that the set of G-representations homomorphisms of V to W can indentified with the set of linear transformations in $\operatorname{Hom}_{\mathbb{C}}(V, W)$ fixed by every element of G under the action described in (1)..

