Undergraduate Representation Theory 2010
Exercise Set 4
author Karen Smith
space-time coordinates monday Feb. 8 at 12-14 in MaA 203
Reading: Review of linear algebra if needed (construction of tensor products, etc.)
Problem 1. Consider a group G acting on a set X.
(1) Prove the relation $x \sim y$ if and only if x is in the G-orbit of y defines an equivalence relation on X.
(2) Explicitly compute the orbits of a group G acting on itself by conjugation in the following cases: G is \mathbb{Z}_{4}, G is D_{4} and G is S_{4}.
(3) How can you generalize (2) for other groups acting on themselves by conjugation?

Problem 2: Building representations from others. Let G be a group acting on a finite dimensional (complex, say) vector spaces V and W.
(1) Show that there is a natural G-action induced on $V \oplus W$.
(2) Show that there is a natural G-action induced on $V \otimes W$.
(3) Show that there is a natural G-action induced on V^{*}, the space of linear functional $V \rightarrow \mathbb{C}$, defined as follows: for $\phi: V \rightarrow \mathbb{C}, g \in G$ acts by $g \cdot \phi$: $V \rightarrow \mathbb{C}$ sending $v \mapsto \phi\left(g^{-1} \cdot v\right)$. Why can't we use g instead of g^{-1} in this expression?
(4) Show that the G-action defined on V^{*} respects the natural pairing between a vector space and its dual. That is: $g \cdot \phi(g \cdot v)=\phi(v)$ for all $v \in V$ and all $\phi \in V^{*}$.
(5) Show that there is a natural G-action induced on the symmetric powers of V.
(6) Show that there is a natural G action induced on the space $\operatorname{Hom}(V, W)$ of linear transformation from V to W.
(7) Show that there is a natural G-action induced on the exterior powers of V.
(8) If we take G to be $G L_{n}\left(\mathbb{F}_{p}\right)$ acting on the vector space of column matrices \mathbb{F}_{p}^{n}, describe explicitly the induced action on $\bigwedge^{n} \mathbb{F}_{p}^{n}$.
Problem 3. Consider the group S_{3} of permutations of three objects.
(1) Show that $S_{3} \cong D_{3}$ of symmetries of an equilateral triangle.
(2) Let $D_{3} \rightarrow G L\left(\mathbf{R}^{2}\right)$ be the tautological representation of D_{3}. Explicitly describe the images of the elements of D_{3} as matrices (fixing the standard basis for \mathbb{R}^{2}). Is this representation irreducible?
(3) Let $S_{3} \rightarrow G L\left(\mathbf{R}^{3}\right)$ be the representation induced by the action of S_{3} on a basis indexed by the vertices of an equilateral triangle. Show that this representation is not irreducible by showing that the subspace consisting of vectors $\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{1}+x_{2}+x_{3}=0$ is a subrepresentation, called the standard representation of S_{3}.
(4) Identifying S_{3} with D_{3} using the isomorphism from (1), prove or disprove that the tautological and standard representations are isomorphic.
KÄÄNNÄ

Problem 4. Consider the group $\left(\mathbb{Z}_{8},+\right)$.
(1) List all one-element generating sets of \mathbb{Z}_{8}.
(2) Prove that a group isomorphism (or group automorphism) $\mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}$ is determined by the image a single generator.
(3) Explicitly list all group isomorphisms $\mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}$.
(4) Show the set of group automorphisms of \mathbb{Z}_{8} forms a subgroup of $\operatorname{Aut}_{\text {set }}\left(\mathbb{Z}_{8}\right) .{ }^{1}$ Let us denote this subgroup by $\operatorname{Aut}_{\text {Grp }}\left(\mathbb{Z}_{8}\right)$.
(5) What is the order of $\operatorname{Aut}_{\text {Grp }}\left(\mathbb{Z}_{8}\right)$? Is it abelian?
(6) Describe the structure of $\operatorname{Aut}_{\mathrm{Grp}}\left(\mathbb{Z}_{8}\right)$, for example, by expressing it as a direct sum of cyclic groups, and/or identifying it with some easily understood subgroup of S_{8}.
(7) How much of this can you generalize to arbitrary cyclic groups \mathbb{Z}_{n} ?
(8) If you are familar with rings, repeat 3-7 in the category of rings, that is, looking at automorphisms of \mathbb{Z}_{8} which preserve the ring structure.

[^0]
[^0]: ${ }^{1} \operatorname{By~Aut}_{\text {set }}\left(\mathbb{Z}_{8}\right)$ we mean simply $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ but we are emphasizing in the notation that we are looking only at bijective self-maps of the set \mathbb{Z}_{8}, regardless of whether not they respect the group structure.

