MATEMATIIKAN JA TILASTOTIETEEN LAITOS

JYVÄSKYLÄN YLIOPISTO

Undergraduate Representation Theory 2010 author Karen Smith space-time coordinates Wednesday Apr. 7 (2 weeks!) MaD 380 at 8.20

Problem 1: Unitary Groups. Fix a positive definite Hermitian inner product Q on an n-dimensional complex vector space V.

- (1) Show that the linear transformations $\phi \in GL(V)$ that respect Q (meaning $Q(\phi(v), \phi(w)) = Q(v, w)$ for all vectors v, w in V) form a subgroup of GL(V). We denote this group $U_Q(V)$.
- (2) When n = 1, describe U(1) explicitly. What familiar lie group is it isomorphic to?
- (3) When Q is the standard Hermitian inner product on \mathbb{C}^n , show that $U_Q(V)$ can be identified with the set U(n) of all $n \times n$ complex matrices A such that $\overline{A}^t A = \mathbf{I}_n.$
- (4) Prove that U(n) is a Lie group, and compute its dimension.
- (5) Note that $U_n(\mathbb{C})$ sits inside the complex manifold $GL_n(\mathbb{C})$. Is it a complex manifold?

Problem 2. Let V be a finite dimensional representation of a group G and fix a basis $\{e_1, \ldots, e_n\}$ of V, so that the representation is given by a group homomorphism $G \to GL_n(\mathbb{R})$. For any positive integer $d \leq n$, explicitly describe the induced group map

$$G \to GL_{\binom{n}{i}}(\mathbb{R})$$

corresponding to the induced representation on $\Lambda^d V$ with respect to the basis $\{e_{i_1} \land$ $e_{i_2} \wedge \cdots \wedge e_{i_d} \}.$

Problem 3. Let \mathbb{F} be any field such that the element 2 = 1 + 1 has a multiplicative inverse (if this bothers you, take $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .)

- (1) Show that a bilinear map $B: V \times V \to P$ is alternating (meaning B(v, v) = 0) if and only if it is skew symmetric (meaning B(v, w) = -B(w, v)).
- (2) Show that for a finite dimensional vector space over \mathbb{F} , an alternating bilinear form

$$V \times V \to \mathbb{F}$$

can always be described by giving a matrix A such that $B(v, w) = v^t A w$. How is the skew-symmetry of B reflected in the matrix A?

(3) Prove that there exists a *non-degenerate* alternating bilinear form on a finite dimensional V if and only if V has even dimension.

Problem 4. Fix a representation of a group G on a vector space V of dimension nover a field \mathbb{F} .

(1) Show that the representation $V \otimes V$ decomposes (as a representation!) as $S^2V \oplus \Lambda^2 V.$

Exercise Set 11

- (2) Consider the permutation action of S_3 on $V = \mathbb{C}^3$. Compute the character of the representations $V^{\otimes 2}$, S^2V and $\Lambda^2 V$.
- (3) Decompose the nine dimensional representation $V^{\otimes 2}$ into irreducible representations (up to isomorphism).

Problem 5. Let $V = \mathbb{R}^3$.

(1) Show that there is a unique skew-symmetric bilinear map

$$B: V \times V \to V$$

satisfying

$$B(e_1, e_2) = e_3, \ B(e_2, e_3) = e_1, \ B(e_3, e_1) = e_2,$$

where e_1, e_2, e_3 is the standard basis.

- (2) Find a formula for B(v, w) in terms of the coordinates of v and w in the standard basis.
- (3) Prove that B(v, w) is the standard "cross product" from physics: $B(v, w) = |v||w| \sin \theta \ \hat{n}$ where θ is the angle between v and w in the plane they span, and \hat{n} is the (right handed) unit normal vector to this plane.
- (4) Show that B satisfies the Jacobi identity, and thus gives \mathbb{R}^3 the structure of a Lie algebra with Lie bracket B.
- (5) Consider the map

$$\mathbb{R}^3 \to M_{3 \times 3}(\mathbb{R})$$

sending

$$\left(\begin{array}{c} a_1\\ a_2\\ a_3 \end{array}\right) \mapsto \left(\begin{array}{ccc} 0 & -a_3 & a_2\\ a_3 & 0 & -a_1\\ -a_2 & a_1 & 0 \end{array}\right).$$

Show that this induces an isomorphism of Lie algebras, with the standard lie bracket on $M_{3\times 3}(\mathbb{R})$ (given by [X, Y] = XY - YX.)