Problem 1: Unitary Groups. Fix a positive definite Hermitian inner product Q on an n-dimensional complex vector space V.
(1) Show that the linear transformations $\phi \in G L(V)$ that respect Q (meaning $Q(\phi(v), \phi(w))=Q(v, w)$ for all vectors v, w in $V)$ form a subgroup of $G L(V)$. We denote this group $U_{Q}(V)$.
(2) When $n=1$, describe $U(1)$ explicitly. What familiar lie group is it isomorphic to?
(3) When Q is the standard Hermitian inner product on \mathbb{C}^{n}, show that $U_{Q}(V)$ can be identified with the set $U(n)$ of all $n \times n$ complex matrices A such that $\bar{A}^{t} A=\mathbf{I}_{n}$.
(4) Prove that $U(n)$ is a Lie group, and compute its dimension.
(5) Note that $U_{n}(\mathbb{C})$ sits inside the complex manifold $G L_{n}(\mathbb{C})$. Is it a complex manifold?

Problem 2. Let V be a finite dimensional representation of a group G and fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, so that the representation is given by a group homomorphism $G \rightarrow G L_{n}(\mathbb{R})$. For any positive integer $d \leq n$, explicitly describe the induced group map

$$
G \rightarrow G L_{\binom{n}{d}}(\mathbb{R})
$$

corresponding to the induced representation on $\Lambda^{d} V$ with respect to the basis $\left\{e_{i_{1}} \wedge\right.$ $\left.e_{i_{2}} \wedge \cdots \wedge e_{i_{d}}\right\}$.

Problem 3. Let \mathbb{F} be any field such that the element $2=1+1$ has a multiplicative inverse (if this bothers you, take $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.)
(1) Show that a bilinear map $B: V \times V \rightarrow P$ is alternating (meaning $B(v, v)=0$) if and only if it is skew symmetric (meaning $B(v, w)=-B(w, v)$).
(2) Show that for a finite dimensional vector space over \mathbb{F}, an alternating bilinear form

$$
V \times V \rightarrow \mathbb{F}
$$

can always be described by giving a matrix A such that $B(v, w)=v^{t} A w$. How is the skew-symmetry of B reflected in the matrix A ?
(3) Prove that there exists a non-degenerate alternating bilinear form on a finite dimensional V if and only if V has even dimension.
Problem 4. Fix a representation of a group G on a vector space V of dimension n over a field \mathbb{F}.
(1) Show that the representation $V \otimes V$ decomposes (as a representation!) as $S^{2} V \oplus \Lambda^{2} V$.
(2) Consider the permutation action of S_{3} on $V=\mathbb{C}^{3}$. Compute the character of the representations $V^{\otimes 2}, S^{2} V$ and $\Lambda^{2} V$.
(3) Decompose the nine dimensional representation $V^{\otimes 2}$ into irreducible representations (up to isomorphism).

Problem 5. Let $V=\mathbb{R}^{3}$.
(1) Show that there is a unique skew-symmetric bilinear map

$$
B: V \times V \rightarrow V
$$

satisfying

$$
B\left(e_{1}, e_{2}\right)=e_{3}, \quad B\left(e_{2}, e_{3}\right)=e_{1}, \quad B\left(e_{3}, e_{1}\right)=e_{2},
$$

where e_{1}, e_{2}, e_{3} is the standard basis.
(2) Find a formula for $B(v, w)$ in terms of the coordinates of v and w in the standard basis.
(3) Prove that $B(v, w)$ is the standard "cross product"from physics: $B(v, w)=$ $|v||w| \sin \theta \hat{n}$ where θ is the angle between v and w in the plane they span, and \hat{n} is the (right handed) unit normal vector to this plane.
(4) Show that B satisfies the Jacobi identity, and thus gives \mathbb{R}^{3} the structure of a Lie algebra with Lie bracket B.
(5) Consider the map

$$
\mathbb{R}^{3} \rightarrow M_{3 \times 3}(\mathbb{R})
$$

sending

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)
$$

Show that this induces an isomorphism of Lie algebras, with the standard lie bracket on $M_{3 \times 3}(\mathbb{R})$ (given by $[X, Y]=X Y-Y X$.)

