1.

a)
$$\begin{cases} x \equiv 2 \pmod{6} \\ x \equiv 5 \pmod{7} \\ x \equiv 8 \pmod{15} \end{cases} \iff \begin{cases} x \equiv 2 \equiv 0 \pmod{2} \\ x \equiv 2 \pmod{3} \\ x \equiv 5 \pmod{7} \\ x \equiv 8 \equiv 3 \pmod{5} \\ (x \equiv 8 \equiv 2 \pmod{3}) \end{cases}$$

So $x \equiv 0y + 2z + 5w + 8u \pmod{210}$. y is not needed. $z = (210/3) \cdot (210/3)_3^{-1} = 70 \cdot (70)_3^{-1} = 70 \cdot 1_3^{-1} = 70$. $w = (210/7) \cdot (210/7)_7^{-1} = 30 \cdot (30)_7^{-1} = 30 \cdot 2_7^{-1} = 30 \cdot 4 = 120$. $u = (210/5) \cdot (210/5)_5^{-1} = 42 \cdot 2_5^{-1} = 42 \cdot 3 = 126$. $x = 2z + 5w + 8u \equiv 2 \cdot 70 + 5 \cdot 120 + 8 \cdot 126 = 140 + 600 + 1008 = 1748 \equiv 68$

(mod 210).

b)
$$\begin{cases} 2x \equiv 3 \pmod{9} \\ 4x \equiv 6 \pmod{10} \\ 6x \equiv 9 \pmod{11} \end{cases} \iff x = \frac{y}{2}, \text{ missä} \begin{cases} y \equiv 0 \pmod{2} \\ y \equiv 3 \pmod{9} \\ 2y \equiv 6 \pmod{10} \\ 3y \equiv 9 \pmod{11} \end{cases} \text{ eli } \begin{cases} y \equiv 0 \pmod{2} \\ y \equiv 3 \pmod{9} \\ y \equiv 3 \pmod{9} \\ y \equiv 3 \pmod{5} \\ y \equiv 3 \pmod{11} \end{cases}$$

So
$$y = 3z + 3u + 3w \pmod{990}$$

 $z = (990/9) \cdot (990/9)_9^{-1} = 110 \cdot (110)_9^{-1} = 110 \cdot 2_9^{-1} = 110 \cdot 5 = 550.$
 $u = (990/5) \cdot (990/5)_5^{-1} = 198 \cdot (198)_5^{-1} = 198 \cdot 2_5^{-1} = 198 \cdot 2 = 396.$
 $w = (990/11) \cdot (990/11)_{11}^{-1} = 90 \cdot (90)_{11}^{-1} = 90 \cdot 2_{11}^{-1} = 90 \cdot 6 = 540.$
 $x = \frac{1}{2}(3z + 3u + 3w) \equiv \frac{1}{2}(3 \cdot 550 + 3 \cdot 396 + 3 \cdot 540) \equiv \frac{3}{2}(550 + 396 + 540) \equiv \frac{3}{2} \cdot 1486 \equiv 2229 \equiv 249 \pmod{495}.$

2. Prove by the Chinese Remainder Theorem: for all $k \in \mathbb{N}$ there exist k consequtive numbers $a + 1, \ldots, a + k$ of which all are divisible whith some square (not necessarily the same).

Apply the Chinese Remainder Theorem to $\begin{cases} x \equiv 1 \pmod{2^2} \\ x \equiv 2 \pmod{3^3} \\ \dots \\ x \equiv k \pmod{p_k^2} \end{cases}$

3. Calculate $\varphi(10)$, $\varphi(100)$ and $\varphi(10!)$.

 $\begin{aligned} \varphi(10) &= \varphi(2)\varphi(5) = (2-1)(5-1) = 4\\ \varphi(100) &= \varphi(10) = \varphi(2^2)\varphi(5^2) = (2^2 - 2^1)(5^2 - 5^1) = 2 \cdot 20 = 40\\ \varphi(10!) &= \varphi(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = \varphi(2^8 3^4 5^2 7^1) = (2^8 - 2^7)(3^4 - 3^3)(5^2 - 5)(7 - 1)\\ &= 128 \cdot 54 \cdot 20 \cdot 6 = 829440 \end{aligned}$

4. a) For which n is $\varphi(n)$ odd? b) For which n is $\varphi(n) = \varphi(2n)$? a) only n=1 and n=2, since all other contain an odd prime or a higher power of 2 in their canonical decompositions.

b) Exactly all odd. Every even number is on the form $n = 2^{\alpha} \cdot t$, with t odd, so $\varphi(n) = \varphi(2^{\alpha}) \cdot \varphi(t) = 2^{\alpha-1}\varphi(t)$ ja $\varphi(2n) = \varphi(2^{\alpha+1}) \cdot \varphi(t) = 2^{\alpha}\varphi(t)$, whereas for odd $\varphi(2n) = \varphi(2)\varphi(n) = 1 \cdot \varphi(n) = \varphi(n)$.

5. Find the orders of 3, 7 ja 11 $\pmod{20}$.

4, 4, 2

6. Find alt least one primitive root modulo 14.

 $2 \text{ and } 5 \text{ are primitive roots} \pmod{14}$.

7. 2 is a primitive root modulo 101. Find $ord_{101}(2^{32})$.

$$(101 - 1)/(32, (101 - 1)) = 100/4 = 25.$$

8. 2 is a primitive root modulo 19. How many primitive roots modulo 19 exist? After finding out this, find all these primitive roots.

Since 19 os prime, by thm there are $\varphi(19-1) = \varphi(18) = \varphi(2 \cdot 3^2) = \varphi(2)\varphi(3^2) = 6$ primitive roots. By experimenting one finds that they are 2, 3, 10, 13, 14 and 15.

9. Let r be a primitive root modulo m and (m, a) = 1. Prove that the following are equivalent:

- (1) a is a primitive root modulo \pmod{m} .
- (2) For all prime factors p of $\varphi(m)$:

$$a^{\varphi(m)/p} \not\equiv 1 \pmod{m}.$$

(1) \implies (2): If a is a primite root (mod m), then $a^j \not\equiv 1 \pmod{m}$ hjolds for all $0 < j < \varphi(m)$.

(2) \implies (1): If a is not a primite root (mod m), there exists $k < \varphi(m)$, s. th. $a^k \equiv 1 \pmod{m}$, for example $k = \circ rd_m a$. But the order of a subgroups divides the order of the whole group, so $k = \circ rd_m a = \# < a > | \#\mathbb{Z}_m^* = \varphi(m)$ ie. $k | \varphi(m)$, ie. $\varphi(m) = kp\alpha$ for some prime factor p of $\varphi(m)$ and some number α .

$$1 = a^k = a^{\varphi(m)/(p\alpha)},$$

 \mathbf{SO}

$$a^{\varphi(m)/p} = \left(a^{\varphi(m)/(p\alpha)}\right)^{\alpha} = 1^{\alpha} = 1.$$

10. Construct an index table for 13. (Compare with the given table).

Take any primite root. I take r = 2. (Smallest). calculating all powers $2^n \pmod{13}$ one gets:

12a1 23 4 56 7 8 9 1011 $\operatorname{ind} a \ 12 \ 1 \ 4 \ 2 \ 9 \ 5 \ 11$ 3 8 107 6

11. Which of the following congruences are solvable?

- a) $x^4 \equiv 17 \pmod{67}$
- b) $x^4 \equiv 18 \pmod{67}$

c) $x^5 \equiv 17 \pmod{67}$

Solve them using that 2 is a primitive root (mod 67).

1. method: brute force: list all squares in \mathbb{Z}_{67} : One way to calculate avoiding big numbers is to use the fact that $1+3+5+\cdots+(2n+1)=n^2$, so $(n+1)^2=n^2+(2n+1)$. There are (67-1)/2=33 squares:

1, 4, 9, 16, 25, 36, 49, 64, 81 \equiv 4, 33, 54, 77, 102 \equiv 35, 62, 79 \equiv 24, 55, 88 \equiv 21, 56, 93 \equiv 26, 65, 106 \equiv 39, 82 \equiv 15, 127 \equiv 60, \equiv 40, 107 \equiv 22, 73 \equiv 6, 126 \equiv 59, 114 \equiv 47, 104 \equiv 37, 96 \equiv 29, 90 \equiv 23, 86 \equiv 19, ja 84 \equiv **17**. (67 \equiv 0 is neither.)

So 17 has a square root: $(\pm 33)^2 \equiv 17 \pmod{67}$. Also 33 has a square root $(\pm 10)^2 \equiv 33 \pmod{67}$, so $10^4 \equiv 17 \pmod{67}$ and $10^4 \equiv 17 \pmod{67}$. Verify by checking that $10000 \equiv 17 \pmod{67}$. (use the pocket calculator: divide 10000-17 by 67 and find that you get 149, an integer.) On the contrary, $-33 \equiv 34$ has no square root (mod 67), so ± 10 are the only solutions to $x^4 \equiv 17 \pmod{67}$.

18 is not in the list, so b) is unsolvable. To solve c) by brute force, you need a list of 5:th powers of all numbers (classes) 1...33. —

2. method: Find the solution as $a = 2^n$, $1 \le n \le 65 \pmod{66}$. This is OK, since 2 is a primitive root (mod 67).

$$x^5 \equiv 17(67) \iff 2^{5n} \equiv 17(67) \iff 5n \equiv \operatorname{ind}_2 17(66).$$

I made an index table (mod 67), with prim. root 2 by calculating powrrs of 2 (mod 67) : (not all — too hard)

$n = \operatorname{ind}_2(2^n)$	2^n	$\pmod{67}$	
0	1	$\pmod{67}$	
4	16	$\pmod{67}$	
5	32	$\pmod{67}$	
8	55	$\pmod{67}$	
10	19	$\pmod{67}$	
11	38	$\pmod{67}$	
12	9	$\pmod{67}$	
15	5	$\pmod{67}$	
16	10	$\pmod{67}$	
20	26	$\pmod{67}$	
24	14	$\pmod{67}$	
25	28	$\pmod{67}$	
28	32	$\pmod{67}$	
30	25	$\pmod{67}$	
32	33	$\pmod{67}$	
35	63	$\pmod{67}$	
36	59	$\pmod{67}$	
40	6	$\pmod{67}$	
44	29	$\pmod{67}$	
45	58	$\pmod{67}$	
48	62	$\pmod{67}$	
50	47	$\pmod{67}$	
52	54	$\pmod{67}$	
55	30	$\pmod{67}$	
56	60	$\pmod{67}$	
60	22	$\pmod{67}$	
64	17	$\pmod{67}$	
65	34	$\pmod{67}$	
66	1	$\pmod{67}$	(Fermat!)

At last: ind $17 = 64 = 4 \cdot 16$, so ex a) is solved by $2^{16} = 10$, like we know already.

b) 1. method: 18 is not in the (complete!) list of squares, so the solution does not exist.

2. method: $\left(\frac{18}{67}\right)$ can be calculated with the reciprocal thm, and becomes -1. No solution!

3. method: Write $n = \operatorname{ind} x$. For $x^4 = 2^{4n} \equiv 18 \pmod{67}$ we must have

 $4n \equiv \text{ind } 18 \pmod{66}$

same as $\operatorname{ind} 18 = 4n - 66k$ for some $k \in \mathbb{Z}$, which implies that $\operatorname{ind} 18$ is even. Now ind 18 is missing in my list of indices, but 9 is in there, so we calculate $\operatorname{ind} 9 = 12$. So $\operatorname{ind} 18 = \operatorname{ind}(2 \cdot 9) = 1 + 12 = 13$, odd, so there is no solution.

Side remark: $ind(\pm 3) = \frac{1}{2}(ind \ 9 = 6 + k \cdot 66)$ (Really: $2^6 = 64 \equiv -3$, ja $2^33 = -1$, so ind(3) = 6 + 33 = 29, which works.)

c) One couls list all 5:th powers of $1 \le k \le 66 \pmod{67}$, until one finds the solution, if ever. We use indices instead

$$x^{5} \equiv 17(67) \iff 2^{5n} \equiv 17(67) \iff 5n \equiv \operatorname{ind}_{2} 17(66)$$
$$\iff 5n \equiv 64(66) (\equiv -2(66)).$$

Since (5, 66) = 1, we can invert 5 in the ring \mathbb{Z}_{66} , so the solution exists. In fact. $5^{-1} = 53 \in \mathbb{Z}_{66}$ can be found with Euclid's algorithm. So

 $n \equiv -2 \cdot 53 \equiv -106 \equiv -40 \equiv 26 \quad (66).$

and a solution is 2^{26} , by the listit is $2 \cdot 2^{25} \equiv 2 \cdot 28 \equiv 56 \equiv -11$. This does it.