1.

a) $\left\{\begin{array}{c}x \equiv 2(\bmod 6) \\ x \equiv 5(\bmod 7) \\ x \equiv 8(\bmod 15)\end{array} \Longleftrightarrow\left\{\begin{array}{c}x \equiv 2 \equiv 0(\bmod 2) \\ x \equiv 2(\bmod 3) \\ x \equiv 5(\bmod 7) \\ x \equiv 8 \equiv 3(\bmod 5) \\ (x \equiv 8 \equiv 2(\bmod 3))\end{array}\right.\right.$

So $x \equiv 0 y+2 z+5 w+8 u(\bmod 210)$.
y is not needed.
$z=(210 / 3) \cdot(210 / 3)_{3}^{-1}=70 \cdot(70)_{3}^{-1}=70 \cdot 1_{3}^{-1}=70$.
$w=(210 / 7) \cdot(210 / 7)_{7}^{-1}=30 \cdot(30)_{7}^{-1}=30 \cdot 2_{7}^{-1}=30 \cdot 4=120$.
$u=(210 / 5) \cdot(210 / 5)_{5}^{-1}=42 \cdot 2_{5}^{-1}=42 \cdot 3=126$.
$x=2 z+5 w+8 u \equiv 2 \cdot 70+5 \cdot 120+8 \cdot 126=140+600+1008=1748 \equiv \mathbf{6 8}$
$(\bmod 210)$.
b) $\left\{\begin{array}{l}2 x \equiv 3(\bmod 9) \\ 4 x \equiv 6(\bmod 10) \\ 6 x \equiv 9(\bmod 11)\end{array} \Longleftrightarrow x=\frac{y}{2}\right.$, missä $\left\{\begin{array}{c}y \equiv 0(\bmod 2) \\ y \equiv 3(\bmod 9) \\ 2 y \equiv 6(\bmod 10) \\ 3 y \equiv 9(\bmod 11)\end{array}\right.$ eli $\left\{\begin{array}{l}y \equiv 0(\bmod 2) \\ y \equiv 3(\bmod 9) \\ y \equiv 3(\bmod 5) \\ y \equiv 3(\bmod 11)\end{array}\right.$

So $y=3 z+3 u+3 w(\bmod 990)$
$z=(990 / 9) \cdot(990 / 9)_{9}^{-1}=110 \cdot(110)_{9}^{-1}=110 \cdot 2_{9}^{-1}=110 \cdot 5=550$.
$u=(990 / 5) \cdot(990 / 5)_{5}^{-1}=198 \cdot(198)_{5}^{-1}=198 \cdot 2_{5}^{-1}=198 \cdot 2=396$.
$w=(990 / 11) \cdot(990 / 11)_{11}^{-1}=90 \cdot(90)_{11}^{-1}=90 \cdot 2_{11}^{-1}=90 \cdot 6=540$.
$x=\frac{1}{2}(3 z+3 u+3 w) \equiv \frac{1}{2}(3 \cdot 550+3 \cdot 396+3 \cdot 540) \equiv \frac{3}{2}(550+396+540) \equiv \frac{3}{2} \cdot 1486 \equiv$ $2229 \equiv 249(\bmod 495)$.
2. Prove by the Chinese Remainder Theorem: for all $k \in \mathbb{N}$ there exist k consequtive numbers $a+1, \ldots, a+k$ of which all are divisible whith some square (not necessarily the same).

Apply the Chinese Remainder Theorem to $\left\{\begin{array}{c}x \equiv 1\left(\bmod 2^{2}\right) \\ x \equiv 2\left(\bmod 3^{3}\right) \\ \ldots \\ x \equiv k\left(\bmod p_{k}^{2}\right)\end{array}\right.$
3. Calculate $\varphi(10), \varphi(100)$ and $\varphi(10!)$.

$$
\begin{aligned}
\varphi(10) & =\varphi(2) \varphi(5)=(2-1)(5-1)=4 \\
\varphi(100) & =\varphi(10)=\varphi\left(2^{2}\right) \varphi\left(5^{2}\right)=\left(2^{2}-2^{1}\right)\left(5^{2}-5^{1}\right)=2 \cdot 20=40 \\
\varphi(10!) & =\varphi(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10)=\varphi\left(2^{8} 3^{4} 5^{2} 7^{1}\right)=\left(2^{8}-2^{7}\right)\left(3^{4}-3^{3}\right)\left(5^{2}-5\right)(7-1) \\
& =128 \cdot 54 \cdot 20 \cdot 6=829440
\end{aligned}
$$

4. a) For which n is $\varphi(n)$ odd?
b) For which n is $\varphi(n)=\varphi(2 n)$?
a) only $n=1$ and $n=2$, since all other contain an odd prime or a higher power of 2 in their canonical decompositions.
b) Exactly all odd. Every even number is on the form $n=2^{\alpha} \cdot t$, with t odd, so $\varphi(n)=\varphi\left(2^{\alpha}\right) \cdot \varphi(t)=2^{\alpha-1} \varphi(t)$ ja $\varphi(2 n)=\varphi\left(2^{\alpha+1}\right) \cdot \varphi(t)=2^{\alpha} \varphi(t)$, whereas for odd $\varphi(2 n)=\varphi(2) \varphi(n)=1 \cdot \varphi(n)=\varphi(n)$.
5. Find the orders of 3,7 ja $11(\bmod 20)$.

4, 4, 2
6. Find alt least one primitive root modulo 14.

2 and 5 are primitive roots $(\bmod 14)$.
7. 2 is a primitive root modulo 101. Find $\operatorname{ord}_{101}\left(2^{32}\right)$.

$$
(101-1) /(32,(101-1))=100 / 4=25
$$

8. 2 is a primitive root modulo 19. How many primitive roots modulo 19 exist? After finding out this, find all these primitive roots.

Since 19 os prime, by thm there are $\varphi(19-1)=\varphi(18)=\varphi\left(2 \cdot 3^{2}\right)=\varphi(2) \varphi\left(3^{2}\right)=6$ primitive roots. By experimenting one finds that they are $2,3,10,13,14$ and 15 .
9. Let r be a primitive root modulo m and $(m, a)=1$. Prove that the following are equivalent:
(1) a is a primitive root modulo $(\bmod m)$.
(2) For all prime factors p of $\varphi(m)$:

$$
a^{\varphi(m) / p} \not \equiv 1 \quad(\bmod m)
$$

$(1) \Longrightarrow(2)$: If a is a primite root $(\bmod m)$, then $a^{j} \not \equiv 1(\bmod m)$ hjolds for all $0<j<\varphi(m)$.
$(2) \Longrightarrow(1)$: If a is not a primite root $(\bmod m)$, there exists $k<\varphi(m)$, s. th. $a^{k} \equiv 1(\bmod m)$, for example $k=$ ord $d_{m} a$. But the order of a subgroups divides the order of the whole group, so $k=$ or $d_{m} a=\#<a>\mid \# \mathbb{Z}_{m}^{*}=\varphi(m)$ ie. $k \mid \varphi(m)$, ie. $\varphi(m)=k p \alpha$ for some prime factor p of $\varphi(m)$ and some number α.

$$
1=a^{k}=a^{\varphi(m) /(p \alpha)}
$$

So

$$
a^{\varphi(m) / p}=\left(a^{\varphi(m) /(p \alpha)}\right)^{\alpha}=1^{\alpha}=1
$$

10. Construct an index table for 13. (Compare with the given table).

Take any primite root. I take $r=2$. (Smallest). calculating all powers $2^{n}(\bmod 13)$ one gets:

$$
\begin{array}{cccccccccccrr}
a & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text { ind } a & 12 & 1 & 4 & 2 & 9 & 5 & 11 & 3 & 8 & 10 & 7 & 6
\end{array}
$$

11. Which of the following congruences are solvable?
a) $x^{4} \equiv 17(\bmod 67)$
b) $x^{4} \equiv 18(\bmod 67)$
c) $x^{5} \equiv 17(\bmod 67)$

Solve them using that 2 is a primitive root $(\bmod 67)$.

1. method: brute force: list all squares in \mathbb{Z}_{67} : One way to calculate avoiding big numbers is to use the fact that $1+3+5+\cdots+(2 n+1)=n^{2}$, so $(n+1)^{2}=n^{2}+(2 n+1)$. There are $(67-1) / 2=33$ squares:

$$
\begin{aligned}
& 1,4,9,16,25,36,49,64,81 \equiv 4,33,54,77,102 \equiv 35,62,79 \equiv 24,55,88 \equiv 21,56, \\
& 93 \equiv 26,65,106 \equiv 39,82 \equiv 15,127 \equiv 60, \equiv 40,107 \equiv 22,73 \equiv 6,126 \equiv 59 \\
& 114 \equiv 47,104 \equiv 37,96 \equiv 29,90 \equiv 23,86 \equiv 19, \text { ja } 84 \equiv 17 \\
& (67 \equiv 0 \text { is neither. })
\end{aligned}
$$

So 17 has a square root: $(\pm 33)^{2} \equiv 17(\bmod 67)$. Also 33 has a square root $(\pm 10)^{2} \equiv 33$ $(\bmod 67)$, so $10^{4} \equiv 17(\bmod 67)$ and $10^{4} \equiv 17(\bmod 67)$. Verify by checking that $10000 \equiv 17(\bmod 67)$. (use the pocket calculator: divide $10000-17$ by 67 and find that you get 149 , an integer.) On the contrary, $-33 \equiv 34$ has no square root $(\bmod 67)$, so ± 10 are the only solutions to $x^{4} \equiv 17(\bmod 67)$.

18 is not in the list, so b) is unsolvable. To solve c) by brute force, you need a list of 5 :th powers of all numbers (classes) 1...33.-........
2. method: Find the solution as $a=2^{n}, 1 \leq n \leq 65(\bmod 66)$. This is OK, since 2 is a primitive root $(\bmod 67)$.

$$
x^{5} \equiv 17(67) \Longleftrightarrow 2^{5 n} \equiv 17(67) \Longleftrightarrow 5 n \equiv \operatorname{ind}_{2} 17(66)
$$

I made an index table $(\bmod 67)$, wtih prim. root 2 by calculating powrss of 2 $(\bmod 67):($ not all - too hard $)$

$$
\left.\begin{array}{rll}
n=\operatorname{ind}_{2}\left(2^{n}\right) & 2^{n} & (\bmod 67) \\
0 & 1 & (\bmod 67) \\
4 & 16 & (\bmod 67) \\
5 & 32 & (\bmod 67) \\
8 & 55 & (\bmod 67) \\
10 & 19 & (\bmod 67) \\
11 & 38 & (\bmod 67) \\
12 & 9 & (\bmod 67) \\
15 & 5 & (\bmod 67) \\
16 & 10 & (\bmod 67) \\
20 & 26 & (\bmod 67) \\
24 & 14 & (\bmod 67) \\
25 & 28 & (\bmod 67) \\
28 & 32 & (\bmod 67) \\
30 & 25 & (\bmod 67) \\
32 & 33 & (\bmod 67) \\
35 & 63 & (\bmod 67) \\
36 & 59 & (\bmod 67) \\
40 & 6 & (\bmod 67) \\
44 & 29 & (\bmod 67) \\
45 & 58 & (\bmod 67) \\
48 & 62 & (\bmod 67) \\
50 & 47 & (\bmod 67) \\
52 & 54 & (\bmod 67) \\
55 & 30 & (\bmod 67) \\
56 & 60 & (\bmod 67) \\
60 & 22 & (\bmod 67) \\
64 & 17 & (\bmod 67) \\
65 & 34 & (\bmod 67) \\
66 & 1 & (\bmod 67) \\
\hline
\end{array} \text { Fermat! }^{24}\right)
$$

At last: ind $17=64=4 \cdot 16$, so ex a) is solved by $2^{16}=10$, like we know already.
b) 1. method: 18 is not in the (complete!) list of squares, so the solution does not exist.
2. method: $\left(\frac{18}{67}\right)$ can be calculated with the reciprocal thm, and becomes -1 . No solution!
3. method: Write $n=\operatorname{ind} x$. For $x^{4}=2^{4 n} \equiv 18(\bmod 67)$ we must have

$$
4 n \equiv \operatorname{ind} 18 \quad(\bmod 66)
$$

same as ind $18=4 n-66 k$ for some $k \in \mathbb{Z}$, which implies that ind 18 is even. Now ind 18 is missing in my list of indices, but 9 is in there, so we calculate ind $9=12$. So ind $18=\operatorname{ind}(2 \cdot 9)=1+12=13$, odd, so there is no solution.

Side remark: $\operatorname{ind}(\pm 3)=\frac{1}{2}(\operatorname{ind} 9=6+k \cdot 66)$ (Really: $2^{6}=64 \equiv-3$, ja $2^{3} 3=-1$, so ind $(3)=6+33=29$, which works.)
c) One couls list all 5 :th powers of $1 \leq k \leq 66(\bmod 67)$, until one finds the solution, if ever. We use indices instead

$$
\begin{aligned}
x^{5} \equiv 17(67) & \Longleftrightarrow 2^{5 n} \equiv 17(67) \Longleftrightarrow 5 n \equiv \operatorname{ind}_{2} 17(66) \\
& \Longleftrightarrow 5 n \equiv 64(66)(\equiv-2(66)) .
\end{aligned}
$$

Since $(5,66)=1$, we can invert 5 in the ring \mathbb{Z}_{66}, so the solution exists. In fact. $5^{-1}=53 \in \mathbb{Z}_{66}$ can be found with Euclid's algortihm. So

$$
n \equiv-2 \cdot 53 \equiv-106 \equiv-40 \equiv 26
$$

and a solution is 2^{26}, by the listit is $2 \cdot 2^{25} \equiv 2 \cdot 28 \equiv 56 \equiv-11$. This does it.

