1. ..
$9 \mid 123456789$ since $1+2+\ldots 9=45$ and $4+5=9$.
$11 \nmid 123456789$ since $11 \not \backslash 1-2+\cdots+9=5$.
476271 is no prime, since $4+7+6+2+7+1=27$ is divisible by 3 .
2. Division criteria for 4 and 8 .
(i) 4: The powers of 10 modulo 4 are $1 \equiv 1,10 \equiv 2,100 \equiv 2^{2}=4 \equiv 0$, and all the rest 0 . So the decimal numbers $a_{n} a_{n-1} \ldots a_{1} a_{0}$ and $a_{1} a_{0}$ and the number $2 a_{1}+a_{0}$ are simultaneously div by 4 . Ex: $222222 \equiv 22$ is not, neither is $2 \cdot 2+2=4$ but $600560 \equiv 60$ is , also $2 \cdot 6+0$ is. Finally: : 3416 is, since 16 is.
(ii) 8 The powers of 10 modulo 8 are $1 \equiv 1,10 \equiv 2,100 \equiv 2^{2}=4,1000 \equiv 2^{3}=$ $8 \equiv 0$ and all the rest 0 . So the decimal numbers $a_{n} a_{n-1} \ldots a_{1} a_{0}$ and $a_{2} a_{1} a_{0}$ and $4 \cdot a_{2}+2 \cdot a_{1}+a_{0}$ are simultaneously div by 8 . Exx. $222222 \equiv 222$ not, since $4 \cdot 2+2 \cdot 2+2=8+4+6$ is not, but $600560 \equiv 560$ is, since $4 \cdot 5+2 \cdot 6+0=$ $20+12=32$ is div by 8 (you can recycle tehe test: $0 \cdot 2+3 \cdot 2+2=8$ is div. Finally 3416 is, since 416 is, becaus $4 \cdot 4+2 \cdot 1+6=16+2+6=24$ is div by 8 .

3. Algebra-Lagrange...

By definition $\varphi(n)=\# \mathbb{Z}_{n}^{*}$ kertaluku, so by Lagrange $N=$ ord $a \in \mathbb{Z}_{n}^{*} \operatorname{divides} \varphi(n)$, ie. $\varphi(n)=N k$ for some $k \in \mathbb{N}$. By definition of ord: $a^{N}=1 \in \mathbb{Z}_{n}^{*}$, so

$$
a^{\varphi(n)}=a^{N k}=\left(a^{N}\right)^{k}=1^{k}=1 \in \mathbb{Z}_{n}^{*}
$$

4. ...
(a) $3 x \equiv 5(\bmod 7)$.
$(3,7)=1$, so there is only one (class of) solution, and it can be found by multiplying with the inverse $(\bmod 7)$ of 3 , which is on 5 . (I tried the alternatives $2,3,4,5,6$, and noticed that $3 \cdot 2=6=-1$, joten $3 \cdot 2 \cdot 3 \cdot 2=1$ eli $1=3 \cdot(2 \cdot 3 \cdot 2)=3 \cdot 12=3 \cdot 5$, and yes: $3 \cdot 5=15=1$.) So $x=5^{2}=25=4 \in \mathbb{Z}_{7}$.
(b) $6 x \equiv 5(\bmod 12)$.

Since $(6,12)=6 \nmid 5$, there are no solutions (thm 2.27).
(c) $943 x \equiv 381(\bmod 2576)$

Since $(943,2576)=23$ ($<$-Euclid on the calculator - or Excel) and 23×381, there is no solution.
(d) $1375 x \equiv 242(\bmod 5625)$ Since $(1375,5625)=11$ and $242=22 \cdot 11$, there are 11 solutions.
5. Solve $6 x \equiv 4(\bmod 10)$.

Since $(6,10)=2$ and $2 \mid 4$, there are 2 solutions. Three methods to find them:
(1) trial and error: $6 \cdot 0=0 \not \equiv 4(\bmod 10)$

$$
\begin{aligned}
& 6 \cdot 1=6 \not \equiv 4(\bmod 10) \\
& 6 \cdot 2=12 \equiv 2 \not \equiv 4(\bmod 10)
\end{aligned}
$$

$$
\begin{aligned}
& 6 \cdot 3=18 \not \equiv 4(\bmod 10) \\
& 6 \cdot 4=24 \equiv 4(\bmod 10) \text { OK! } \\
& 6 \cdot 5=30 \not \equiv 4(\bmod 10) \\
& 6 \cdot 6=36 \not \equiv 4(\bmod 10) \\
& 6 \cdot 7=42 \not \equiv 4(\bmod 10) \\
& 6 \cdot 8=48 \not \equiv 4(\bmod 10) \\
& 6 \cdot 9=54 \equiv 4(\bmod 10) \text { OK! } \\
& \text { really: } 9=4+10 / 2, \text { like the theory predicts. }
\end{aligned}
$$

(2) Euler: Divide $(6,10)(=2)$ away and consider $3 x \equiv 2(\bmod 5)$.
$\varphi(5)=4$, so $x \equiv 3^{\operatorname{varphi}(10)-1}=3^{3}=9 \equiv 4$. The other solution (9) is found by adding $10 / 2=5$.
(3) Euclid: Divide again $(6,10)(=2)$ away and consider $3 x \equiv 2(\bmod 5)$. Use Eukleideen algoritmillato find y and z s. th. $3 y+5 z=1$:
$5=3+2, \quad 3=2+1$, siis
$1=3-2=3-(5-3)=2 \cdot 3-1 \cdot 5$, joten kelpaa $y=2, x=-1$.
which gives $3 y \equiv 1(\bmod 5)$ ie $3 \cdot 2 \equiv 1(\bmod 5)$, which implies $3 \cdot 2 \cdot 2 \equiv 2$ $(\bmod 5)$, so $x=4$ is a solution. The other solution (9) is again found by adding $10 / 2=5$.
Notice: solving the lin cdongruendce $a x \equiv 1(\bmod n)$ is equivalent to finding the inverse $a^{-1} \in \mathbb{Z}_{n}$. (denoted by a^{\prime} in the course text.)
6. ...

$$
\begin{cases}x \equiv 1 & (\bmod 2) \\ x \equiv 2 & (\bmod 3) \\ x \equiv 0 & (\bmod 7)\end{cases}
$$

Full explanation of solution an'd theory: 2, 3 and 7 primes, in poarticular pairwise relative primes. OK! The solution will be found as a number $x=1 \cdot y+2$. $z+0 \cdot w$, where y, z, w satissfy the easier congruence systems (to be solved first) :
$\left\{\begin{array}{l}y \equiv 1(\bmod 2) \\ y \equiv 0(\bmod 3) \\ y \equiv 0(\bmod 7)\end{array},\left\{\begin{array}{l}z \equiv 0(\bmod 2) \\ z \equiv 1(\bmod 3) \\ z \equiv 0(\bmod 7)\end{array}\right.\right.$ and $\left\{\begin{array}{l}w \equiv 0(\bmod 2) \\ w \equiv 0(\bmod 3) \\ w \equiv 1(\bmod 7)\end{array}\right.$
Let

$$
n_{1}=2, n_{2}=3, n_{3}=7, N=n_{1} n_{2} n_{3}=42,
$$

and

$$
N_{1}=N / n_{1}=n_{2} n_{3}=21, N_{2}=N / n_{2}=n_{1} n_{3}=14, \text { and } N_{3}=N / n_{3}=n_{1} n_{2}=6
$$

By tye theorrym the soltuion is unique $(\bmod N)$, jso we aearch for one solution $x \in \mathbb{Z}$. The system of congruences $\left\{\begin{array}{l}y \equiv 1(\bmod 2) \\ y \equiv 0(\bmod 3) \\ y \equiv 0(\bmod 7)\end{array}\right.$ asks for a number y, divisible by 3 and 7 , so of the form $y=N_{1} k=21 k$ for which $y \equiv 1(\bmod 2)$. We must solve $y=21 k \equiv 1(\bmod 2)$ ie find the inverse $k=N_{1}^{\prime}$ of $21=N_{1}$ in \mathbb{Z}_{2}. Of couirse $k=1$, since $N_{1}=21 \equiv 1(\bmod 2)$. So $y=21 \cdot 1=21$, which is readily seen to satisfy the congruences in question.

Simiolarly, from $\left\{\begin{array}{l}z \equiv 0(\bmod 2) \\ z \equiv 1(\bmod 3), \text { we find } z=14 N_{2}^{\prime}, \text { where } 14 N_{2}^{\prime} \equiv 1(\bmod 3) \text {, so } \\ z \equiv 0(\bmod 7)\end{array}\right.$ one can take $N_{2}^{\prime}=2$, giving $z=28$ which solves the appropriate three congruences.

The 3. set of congruences can be left unsolved, since the coefficient in x is zero. So $x=y+2 x+0 w=21+2 \cdot 28=77$. Since $N=42,77-42=35$ is the smallest positive solution. I checked it.
7. ...solutions: .

Since the inverses N_{j}^{\prime} refer to different modules n_{j}, I like to represent them by $\left(N_{j}\right)_{j}^{-1}$, which is not standard.
a) $\left\{\begin{array}{l}x \equiv 2(\bmod 5) \\ x \equiv 5(\bmod 7) \\ x \equiv 7(\bmod 12)\end{array} \quad\right.$ Siis $x=2 y+5 z+7 w$,
$y=(7 \cdot 12) \cdot(7 \cdot 12)_{5}^{-1}=84 \cdot(84)_{5}^{-1}=84 \cdot(4)_{5}^{-1}=84 \cdot 4=336$.
(Better:
$y=(7 \cdot 12) \cdot(7 \cdot 12)_{5}^{-1}=84 \cdot(2 \cdot 2)_{5}^{-1}=84 \cdot(4)_{5}^{-1}=84 \cdot 4=336$.
$z=(5 \cdot 12) \cdot(5 \cdot 12)_{7}^{-1}=60 \cdot(60)_{7}^{-1}=60 \cdot(4)_{7}^{-1}=60 \cdot 2=120$.
$w=(5 \cdot 7) \cdot(5 \cdot 7)_{12}^{-1}=35 \cdot(35)_{12}^{-1} \cdot 2=35 \cdot(-1)_{12}^{-1}=35 \cdot 11=385$.
$x=2 \cdot 336+5 \cdot 120+7 \cdot 385=3967 \equiv \mathbf{1 8 7}(\bmod 5 \cdot 7 \cdot 12=420)$
b) $\left\{\begin{array}{l}x \equiv 2(\bmod 6) \\ x \equiv 5(\bmod 7) \\ x \equiv 7(\bmod 15)\end{array}\right.$
b') $\left\{\begin{array}{l}x \equiv 0(\bmod 2) \\ x \equiv 2(\bmod 3) \\ x \equiv 5(\bmod 7) \\ x \equiv 7(\bmod 15)\end{array}\right.$

Similarly, the last congruence $x \equiv 7(\bmod 15)$ splits into $\left\{\begin{array}{l}x \equiv 7 \equiv 1(\bmod 3) \\ x \equiv 7 \equiv 2(\bmod 5)\end{array}\right.$
There is no solution, since a solution would be both even and odd (....very odd indeed!)
c) $\left\{\begin{array}{l}x \equiv 2(\bmod 5) \\ x \equiv 5(\bmod 7) \\ x \equiv 8(\bmod 12)\end{array}\right.$

So $x=2 y+5 z+8 w$, where x, y and z are like in a), so $y=336, z=120$ ja $w=385$. Just add w ti the solution of a) : $x=187+385=572 \equiv 152(\bmod 420)$. (Itg works.)
d) $\left\{\begin{array}{l}x \equiv 3(\bmod 9) \\ x \equiv 6(\bmod 10) \\ x \equiv 9(\bmod 11)\end{array}\right.$ So $x=3 y+6 z+9 w, \quad N=990$.
$y=(10 \cdot 11) \cdot(10 \cdot 11)^{-1}{ }_{9}=110 \cdot(1 \cdot 2)_{9}^{-1}=110 \cdot(2)_{9}^{-1}=110 \cdot 5=550$.
$z=(9 \cdot 11) \cdot(9 \cdot 11)_{10}^{-1}=99 \cdot(-1 \cdot 1)_{10}^{-1}=99 \cdot 9=891$.
$w=(9 \cdot 10) \cdot(9 \cdot 10)_{11}^{-1}=90 \cdot(2)_{11}^{-1}=90 \cdot 6=540$.
$x=3 \cdot 550+6 \cdot 891+9 \cdot 540=11856 \equiv \mathbf{9 6 6}(\bmod 9 \cdot 10 \cdot 11=990)$.
8. Assume $p \neq q$ are primes.

B y Fermat

$$
\begin{aligned}
p^{q-1} \equiv 1 \quad(\bmod q), \text { joten } p^{q-1}+q^{p-1} \equiv 1 & (\bmod q) \\
\text { Similarly } q^{p-1} \equiv 1 \quad(\bmod p), \text { joten } p^{q-1}+q^{p-1} \equiv 1 & (\bmod p), \\
\text { so, since }(p, q)=1, p^{q-1}+q^{p-1} \equiv 1 & (\bmod p q) .
\end{aligned}
$$

9. Let p be prime
(a) $(a+b)^{p} \stackrel{\text { Fermat }}{\equiv} a+b \stackrel{\text { Fermat }}{\equiv} a^{p}+b^{p}(\bmod p)$.
(b) $(a+b)^{p}=\sum_{k=1}^{p}\binom{p}{k} a^{k} b^{m-k} \equiv a^{p}+b^{p}(\bmod p),\left(\right.$ Koska $p \left\lvert\,\binom{ p}{k}\right.$, kun $1<k<p$.)
(c) Prove Fermat's theormm by induction wrt. a. Start: $1^{p}=1 \equiv 1(\bmod p)$

$$
\text { Step: }(a+1)^{p} \stackrel{2)}{=} a^{p}+1^{p}=a^{p}+1 \stackrel{\text { Ind.ol }}{=} a+1
$$

