1. a) no square of an integer is of the form $4 n+2$ or $4 n+3$.
b) the product of 4 consecutive numbers is divisible by 24.
c) the product of k consecutive numbers is divisible by k !.
a) The sqaure of an even number is $(2 m)^{2}=4 m^{2}=4 n+0$, not $4 n+2$ or $4 n+3$ (div. algor. uniqueness). The sqaure of an even number is $(2 m+1)^{2}=4 m^{2}+4 m+1$, not $4 n+2$ or $4 n+3$ (div. algor. uniqueness).

With congruences: Prove that the congruence $x^{2} \equiv 2(\bmod 4)$ and $x^{2} \equiv 3(\bmod 4)$ has no solutions, ie solve the 2 degree equations $x^{2}=2$ and $x^{2}=3$ in the ring \mathbb{Z}_{4}. Easy, because only 4 alternatives. Try all. Since $0^{2}=0,1^{2}=1,4^{2}=4=0$ and $3^{2}=9=1$, there are no solutions.
b) Of the 4 numbers 2 are even, one of them divisible by 4 . One si div by 3 . therefore, the ir product is div by 24 .
c) in \mathbb{N}, the product of k numbers $a, a+1, \ldots a+k$ is $\frac{(a+k)!}{a!}$. Dividing by k ! gives $\frac{(a+k)!}{a!k!}=\binom{a+k}{a}=\binom{a+k}{k} \in \mathbb{N}$, well known to be an ineteger (or see below). For negtive numbers, add to all $m k$! with large enough m to make them positive. This does not effect calcualtions $(\bmod k!)$.
2. Take $x \in \mathbb{R}, m \in \mathbb{N}$ and $p \in \mathbb{P}$.
a) Prove, that $\left\lfloor\frac{\lfloor x\rfloor}{m}\right\rfloor=\left\lfloor\frac{x}{m}\right\rfloor$
b) Prove, that $\left.p^{\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\ldots} \right\rvert\, m$, mutta $p^{1+\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\ldots} \not$ m.
c) How many zeros are at the end of tjhe decimal expansion of 169!?
d) Prove directly from the definition that (the binoimial coefficients) $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are integers
a) There are no integers in $\left[\frac{\lfloor x\rfloor}{m}, \frac{x}{m}\left[\right.\right.$, since if there were $n \in\left[\frac{\lfloor x\rfloor}{m}, \frac{x}{m}[\right.$, we would have $n m \in[\lfloor x\rfloor, x[$, , which is not possible.
b) Denote $k=\prod_{q \in \mathbb{P}} q^{a_{q}} \in \mathbb{N}$ so the power of p is

$$
N_{p}(k)=N(k)=a_{p}=\max \{a \in \mathbb{N}|p| k\} .
$$

Try to calcualte $N(m!)$. Of course $N(m!)=N(1 \cdot 2 \cdot 3 \cdots \cdots m=N(1) \cdot N(2) \cdot N(3) \cdots$ $N(m)$, but because p only divides $p, 2 p, \ldots$, so

$$
\begin{aligned}
N(m!) & =N(p) \cdot N(2 p) \cdot N(3 p) \cdots N\left(\left\lfloor\frac{m}{p}\right\rfloor p\right)=N\left(p \cdot 2 p \cdot 3 p \cdots\left(\left\lfloor\frac{m}{p}\right\rfloor p\right)\right) \\
& =N\left(p^{\left\lfloor\frac{m}{p}\right\rfloor} \cdot 1 \cdot 2 \cdot 3 \cdots \cdots\left\lfloor\frac{m}{p}\right\rfloor\right)=\left\lfloor\frac{m}{p}\right\rfloor+N\left(1 \cdot 2 \cdot 3 \cdots \cdots\left\lfloor\frac{m}{p}\right\rfloor\right) \\
& =\left\lfloor\frac{m}{p}\right\rfloor+N\left(\left\lfloor\frac{m}{p}\right\rfloor\right)!
\end{aligned}
$$

Repeat this and use a):

$$
\begin{gathered}
N(m!)=\left\lfloor\frac{m}{p}\right\rfloor+N\left(\left\lfloor\frac{m}{p}\right\rfloor\right)!=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{\left\lfloor\frac{m}{p}\right\rfloor}{p}\right\rfloor+N\left(\left\lfloor\frac{\left\lfloor\frac{m}{p}\right\rfloor}{p}\right\rfloor\right) \\
=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+N\left(\left\lfloor\frac{m}{p^{2}}\right\rfloor\right)=\cdots=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\left\lfloor\frac{m}{p^{3}}\right\rfloor+\ldots \text { äärellinen summa. } \\
1
\end{gathered}
$$

c) Apply b). Since 10 is no prime, we must apply b) to its prime factors. begin with 2 (a bad choice!) :

$$
\begin{aligned}
N_{2}(169!) & =\left\lfloor\frac{169}{2}\right\rfloor+\left\lfloor\frac{169}{2^{2}}\right\rfloor+\left\lfloor\frac{169}{2^{3}}\right\rfloor+\cdots= \\
& =84+42+21+10+5+2+1 .
\end{aligned}
$$

Next $p=5$

$$
\begin{aligned}
N_{5}(169!) & =\left\lfloor\frac{169}{5}\right\rfloor+\left\lfloor\frac{169}{5^{2}}\right\rfloor+\left\lfloor\frac{169}{5^{3}}\right\rfloor+\cdots= \\
& =33+6+1=40
\end{aligned}
$$

Since the latter (we should have guessed it right out!!) is smaller, 169! is divisible by 10 exactly 40 times.
d) $\binom{n}{k}=\frac{n!}{k!(n-k)!\in \mathbb{N}}$ since it is easy to see by b), that every prime factor of the denominator appears at least equally often in the numerator.
3. ...
a) The multiplication table $(\bmod 11)$ reveals that tne numbers $1 \ldots 10$ have inverses (mod 11) (in the right order) $1,6,4,3,9,2,8,7,5$
b) of the numbers $1-12$ only $\varphi(12)=k p l$ are invertible $(\bmod 12)-$ same a s relative primes to 12 , namely $1,5,7$ and 11 . The multiplication table $(\bmod 12)$ reveals that tne numbers $1,5,7$ and 11 have inverses ($\bmod 12$) ovat (in the right order) 1,5,7,11, so all these are inverses of themselves.

It may be easier to consider the representations $1,5,7-12=-5$ and $11-12=-1$, with inverses $1,5,-5$ and -1 .
4.

$$
\begin{aligned}
N & =\sum_{j} a_{j} 10^{j} \\
& \equiv a_{0}+a_{1} \cdot 10^{1}+a_{2} \cdot 10^{2}+a_{3} \cdot 10^{3}+a_{4} \cdot 10^{4}+\ldots \\
& \equiv a_{0}+a_{1} \cdot 3+a_{2} \cdot 3^{2}+a_{3} \cdot 3^{3}+a_{4} \cdot 3^{4}+\ldots \\
& \equiv a_{0}+a_{1} \cdot 3+a_{2} \cdot 2+a_{3} \cdot(-1)+a_{4} \cdot 3 \cdot(-1)+a_{5} \cdot 2 \cdot(-1)+\ldots \\
& \equiv\left(a_{0}+a_{1} \cdot 3+a_{2} \cdot 2\right)-\left(a_{3}+a_{4} \cdot 3+a_{5} \cdot 2\right)+\ldots \quad(\bmod 7)
\end{aligned}
$$

$$
7\left|n=\prod a_{\mu} 10^{\mu} \Longleftrightarrow 7\right|\left(a_{0}+3 a_{1}+2 a_{2}\right)-\left(a_{3}+3 a_{4}+2 a_{5}\right)+\left(a_{6}+3 a_{7}+2 a_{8}\right)-\ldots
$$

5. ...
a) $\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19\}$
and $\{-1,0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,20000000000010\}$ are complete ($=\mathrm{tjs}$ in Finnish).
$1,3,7,9,11,13,17,19$ is reduced, so is $-9,-7,-3,-1,1,3,7,9$. (Yes, these sets have $\varphi(20)=\varphi(5) \cdot \varphi(4)=4 \cdot 2=8$ elements. payb attention ti the symmetry in the latter set.)
b) One complete (tjs) modulo n is $\{1,2, \ldots, n\}$, so $2 \cdot \sum(t j s)=.n(n+1) \equiv 0$. the smalölest natural number x, satisfying $2 x \equiv 0(\bmod n)$ is $n / 2$, if n iseven and n else.
c) If $n>2$, then the reduced remainder system (sjs) modulo n can be written $\left\{-a_{1}, \ldots,-a_{m}, a_{m}, \cdots-a_{1}\right\}$, since $(k, n)=(-k, n)$. So $\sum(s j s.) \equiv 0$, and the number is n. If $n=2$ the sjs is $\{1\}$, with smallest positive representative 1 .
6. a) If $(m, n)=1$, then x goes through a t.j.s $X(\bmod m)$ and y a t.j.s Y $(\bmod n)$,then the numbers $x n+m y$ attain all possible values $(\bmod m n)$.b) Similarly for reduced systems.
a) Assume $(m, n)=1$. We prove that there are $n m$ distinct $(\bmod n m)$ numbers $x n+y m(\bmod n m)$ with $x \in X, y \in Y$. First we prive that they are distinct: If not, then

$$
x_{1} n+y_{1} m \equiv x_{2} n+y_{2} m \quad(\bmod n m),
$$

so, because $(n, m)=1 \Longrightarrow n$ is invertible in the $\operatorname{ring} \mathbb{Z}_{m}$,

$$
\begin{aligned}
x_{1} n+y_{1} m & \equiv x_{2} n+y_{2} m \quad(\bmod n m) \\
\left(x_{1}-x_{2}\right) n & \equiv\left(y_{2}-y_{1}\right) m \quad(\bmod n m) \\
\left(x_{1}-x_{2}\right) n & \equiv\left(y_{2}-y_{1}\right) m \equiv 0 \quad(\bmod m) \quad \mid \cdot n^{\prime} \\
\left(x_{1}-x_{2}\right) & \equiv 0 \quad(\bmod m) \\
x_{1} & \equiv x_{2} \quad(\bmod m) \\
x_{1} & =x_{2} \quad(\bmod m), \text { since } x_{1}, x_{2} \in X, \text { which is a is } \mathrm{tjs}
\end{aligned}
$$

Similarly $y_{1}=y_{2}$. since trhe congruence classes $x n+y m$ are distinct, there are $n m$ of them.
b) Similar, but one has to prove that $x n+y m$ is in the sjs . $(\bmod m n)$ ie invertible in the ring $\mathbb{Z}_{m n}$, when x is invertible $(\bmod n), y$ is invertible $(\bmod m)$ and $(m, n)=$ 1. We prove that $(x n+y m, n m)=1$. Since $(n, m)=1$, we have to prove that $(x n+y m, n)=1$ and $(x n+y m, m)=1$. Clearly $(x n+y m, n)=(y m, n)=1$, since both y and n are relative primes to m. Similarly $(x n+y m, m)=1$.
7.

By Wikipedia: (read more there and in Wolfram's math world)
Just like the Fermat and Solovay-Strassen tests, the Miller-Rabin test relies is an equality or set of equalities that hold true for prime values, then checks whether or not they hold for a number that we want to test for primality.

First, a lemma about square roots of unity in the finite field Z_{p}, where p is prime and $p>2$. Certainly 1 and -1 always yield 1 when squared $\bmod p$; call these trivial square roots of 1 .

Lemma: There are no nontrivial square roots of $1 \bmod p$
Proof. This is a a special case of the result that, in a field, a polynomial has no more zeroes than its degree. To show this, suppose that x is a square root of $1 \bmod$ p. Then: $x^{2} \equiv 1(\bmod p)$ ie. $(x-1)(x+1) \equiv 0(\bmod p)$, which in a field implies $(x+1) \equiv 0(\bmod p)$ or $(x-1) \equiv 0(\bmod p)$.

Proof proper:Now, let p be an odd prime. Then $p-1$ is even and we can write it as $2^{s} \cdot d$, where s and d are positive integers, and d is odd. For each $a \in \mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$, either

$$
a^{d} \equiv 1 \quad(\bmod p)
$$

or

$$
a^{2^{r} d} \equiv-1 \quad(\bmod p)
$$

for some $0 \leq r<s$.
To show that one of these must be true, recall Fermat's little theorem: (Choose a such that $p \nmid a$.)

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

By the lemma above, if we keep taking square roots of a^{p-1}, we will get either 1 or -1 . If we get -1 then the second equality holds and we are done. If we never get -1 , then when we have taken out every power of 2 , we are left with the first equality.

Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. As of 1997 no counterexamples are known and if any exist, they are expected to occur with extremely small probability (i.e., much less than the probability of a hardware error is a computer performing the test).
8. Solve $x^{2} \equiv-1(\bmod 13)$ using Wilson's thm.

13 is prime, so by Wilson

$$
(13-1)!+1 \equiv 0 \quad(\bmod 13)
$$

giving

$$
12!\equiv-1 \quad(\bmod 13)
$$

Huomataan, että

$$
\begin{aligned}
12 & \equiv-1 \\
11 & (\bmod 13) \\
\equiv-2 & (\bmod 13) \\
10 \equiv-3 & (\bmod 13) \\
\vdots & \\
7 & \equiv-6
\end{aligned} \quad(\bmod 13) .
$$

Siis $-1 \equiv 12!\equiv(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)^{2} \equiv 24^{2} \equiv 5^{2}(\bmod 13)$. Also -5 is a msolution! (others??)

