
Exercise help set 4/2011 Number Theory

1. a) no square of an integer is of the form 4n + 2 or 4n + 3.
b) the product of 4 consecutive numbers is divisible by 24.
c) the product of k consecutive numbers is divisible by k! .

a) The sqaure of an even number is (2m)2 = 4m2 = 4n + 0, not 4n + 2 or 4n + 3
(div. algor. uniqueness). The sqaure of an even number is(2m + 1)2 = 4m2 + 4m + 1,
not 4n + 2 or 4n + 3 (div. algor. uniqueness).

With congruences: Prove that the congruence x2 ≡ 2 (mod 4) and x2 ≡ 3 (mod 4)
has no solutions, ie solve the 2 degree equations x2 = 2 and x2 = 3 in the ring Z4.
Easy, because only 4 alternatives. Try all. Since 02 = 0, 12 = 1, 42 = 4 = 0 and
32 = 9 = 1, there are no solutions.

b) Of the 4 numbers 2 are even, one of them divisible by 4. One si div by 3.
therefore, the ir product is div by 24.

c) in N, the product of k numbers a, a + 1, . . . a + k is (a+k)!
a!

. Dividing by k!

gives (a+k)!
a!k!

=
(

a+k
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)
=

(
a+k
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)
∈ N, well known to be an ineteger (or see below). For

negtive numbers, add to all mk! with large enough m to make them positive. This
does not effect calcualtions (mod k!) .

2. Take x ∈ R, m ∈ N and p ∈ P.
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c) How many zeros are at the end of tjhe decimal expansion of 169! ?
d)Prove directly from the definition that (the binoimial coefficients)

(
n
k

)
= n!

k!(n−k)!

are integers

a) There are no integers in
[
bxc
m

, x
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[
, since if there were n ∈

[
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[
, we would

have nm ∈ [bxc, x[ ,, which is not possible.
b) Denote k =

∏
q∈P qaq ∈ N so the power of p is

Np(k) = N(k) = ap = max{a ∈ N
∣∣ p | k}.

Try to calcualte N(m!). Of course N(m!) = N(1 ·2 ·3 · · · · ·m = N(1) ·N(2) ·N(3) · · · ·
N(m), but because p only divides p, 2p, . . . , so

N(m!) = N(p) ·N(2p) ·N(3p) · · · ·N
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Repeat this and use a):
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c) Apply b). Since 10 is no prime, we must apply b) to its prime factors. begin
with 2 ( a bad choice!) :

N2(169!) =
⌊

169
2

⌋
+ b169

22 c+ b169
23 c+ · · · =

= 84 + 42 + 21 + 10 + 5 + 2 + 1.

Next p = 5
N5(169!) = b169

5
c+ b169

52 c+ b169
53 c+ · · · =

= 33 + 6 + 1 = 40.

Since the latter (we should have guessed it right out!!) is smaller, 169! is divisible by
10 exactly 40 times.

d)
(

n
k

)
= n!

k!(n−k)!∈N since it is easy to see by b), that every prime factor of the

denominator appears at least equally often in the numerator.

3. ...

a) The multiplication table (mod 11) reveals that tne numbers 1 . . . 10 have inver-
ses (mod 11) (in the right order) 1, 6, 4, 3, 9, 2, 8, 7, 5

b)of the numbers 1–12 only ϕ(12) = kpl are invertible (mod 12) – same a s relative
primes to 12, namely 1,5,7 and 11. The multiplication table (mod 12) reveals that
tne numbers 1,5,7 and 11 have inverses (mod 12) ovat (in the right order) 1,5,7,11,
so all these are inverses of themselves.

It may be easier to consider the representations 1,5,7-12=-5 and 11-12=-1, with
inverses 1,5,-5 and -1.

4. ....

N =
∑

j

aj10j

≡ a0 + a1 · 101 + a2 · 102 + a3 · 103 + a4 · 104 + . . .

≡ a0 + a1 · 3 + a2 · 32 + a3 · 33 + a4 · 34 + . . .

≡ a0 + a1 · 3 + a2 · 2 + a3 · (−1) + a4 · 3 · (−1) + a5 · 2 · (−1) + . . .

≡ (a0 + a1 · 3 + a2 · 2)− (a3 + a4 · 3 + a5 · 2) + . . . (mod 7)

7 |n =
∏

aµ10µ ⇐⇒ 7 | (a0 + 3a1 + 2a2)− (a3 + 3a4 + 2a5) + (a6 + 3a7 + 2a8)− . . .

5. ...

a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}
and {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20000000000010} are comple-

te (=tjs in Finnish).
1, 3, 7, 9, 11, 13, 17, 19 is reduced, so is −9,−7,−3,−1, 1, 3, 7, 9. (Yes, these sets

have ϕ(20) = ϕ(5) · ϕ(4) = 4 · 2 = 8 elements. payb attention ti the symmetry in the
latter set.)

b) One complete (tjs) modulo n is {1, 2, . . . , n} , so 2 ·
∑

(tjs.) = n(n + 1) ≡ 0.
the smalölest natural number x, satisfying 2x ≡ 0 (mod n) is n/2, if n iseven and n
else.
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c) If n > 2, then the reduced remainder system (sjs) modulo n can be written
{−a1, . . . ,−am, am, · · · − a1}, since (k, n) = (−k, n). So

∑
(sjs.) ≡ 0,and the number

is n. If n = 2 the sjs is {1}, with smallest positive representative 1.

6. a) If (m,n) = 1, then x goes through a t.j.s X (mod m) and y a t.j.s Y
(mod n),then the numbers xn+my attain all possible values (mod mn). b) Similarly
for reduced systems.

a) Assume (m, n) = 1. We prove that there are nm distinct (mod nm) numbers
xn + ym (mod nm) with x ∈ X, y ∈ Y . .First we prive that they are distinct: If not,
then

x1n + y1m ≡ x2n + y2m (mod nm),

so, because (n, m) = 1 =⇒ n is invertible in the ring Zm,

x1n + y1m ≡ x2n + y2m (mod nm)

(x1 − x2)n ≡ (y2 − y1)m (mod nm)

(x1 − x2)n ≡ (y2 − y1)m ≡ 0 (mod m)
∣∣ ·n′

(x1 − x2) ≡ 0 (mod m)

x1 ≡ x2 (mod m)

x1 = x2 (mod m), since x1, x2 ∈ X, which is a is tjs

Similarly y1 = y2. since trhe congruence classes xn+ ym are distinct, there are nm of
them.

b) Similar, but one has to prove that xn+ym is in the sjs . (mod mn)ie invertible
in the ring Zmn,when x is invertible (mod n), y is invertible (mod m) and (m,n) =
1. We prove that (xn + ym, nm) = 1. Since (n, m) = 1, we have to prove that
(xn + ym, n) = 1 and (xn + ym,m) = 1. Clearly (xn + ym, n) = (ym, n) = 1, since
both y and n are relative primes to m . Similarly (xn + ym,m) = 1. �. ’

7. ....

By Wikipedia: (read more there and in Wolfram’s math world)
Just like the Fermat and Solovay–Strassen tests, the Miller–Rabin test relies is an

equality or set of equalities that hold true for prime values, then checks whether or
not they hold for a number that we want to test for primality.

First, a lemma about square roots of unity in the finite field Zp, where p is prime
and p > 2. Certainly 1 and −1 always yield 1 when squared mod p; call these trivial
square roots of 1.

Lemma: There are no nontrivial square roots of 1 mod p
Proof. This is a a special case of the result that, in a field, a polynomial has no

more zeroes than its degree. To show this, suppose that x is a square root of 1 mod
p. Then: x2 ≡ 1 (mod p) ie. (x − 1)(x + 1) ≡ 0 (mod p), which in a field implies
(x + 1) ≡ 0 (mod p) or (x− 1) ≡ 0 (mod p). �

Proof proper:Now, let p be an odd prime. Then p−1 is even and we can write it
as 2s ·d, where s and d are positive integers, and d is odd. For each a ∈ Z∗

p = Zp \{0},
either

ad ≡ 1 (mod p)
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or
a2rd ≡ −1 (mod p)

for some 0 ≤ r < s.
To show that one of these must be true, recall Fermat’s little theorem: (Choose

a such that p 6 | a.)
ap−1 ≡ 1 (mod p)

By the lemma above, if we keep taking square roots of ap−1, we will get either 1 or
−1. If we get −1 then the second equality holds and we are done. If we never get −1,
then when we have taken out every power of 2, we are left with the first equality. �

Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller
test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test
used by the function PrimeQ[n]. As of 1997 no counterexamples are known and if
any exist, they are expected to occur with extremely small probability (i.e., much less
than the probability of a hardware error is a computer performing the test).

8. Solve x2 ≡ −1 (mod 13) using Wilson’s thm.

13 is prime, so by Wilson

(13− 1)! + 1 ≡ 0 (mod 13)

giving
12! ≡ −1 (mod 13).

Huomataan, että
12 ≡ −1 (mod 13)

11 ≡ −2 (mod 13)

10 ≡ −3 (mod 13)

...
...

7 ≡ −6 (mod 13).

Siis −1 ≡ 12! ≡ (1 · 2 · 3 · 4 · 5 · 6)2 ≡ 242 ≡ 52 (mod 13). Also −5 is a msolution!
(others??)


