Exercise set 8

Tuesday NOV 82011 at 4 pm. Sharp

Number Theory in MaD-302

1. Do the following "baby"example of the RSA encryption method: The secret numbers are $p=11, q=13$; the public numbers are $m=p q=143$ and $e=77$.
a) Calculate the decoding number d.
b) Encode the message 50
c) Decode your message. . Hope You got the original.

Could You have broken the code knowing only (thee) e and m? How about a real life example?
2. Solve exercise 4.1. in Ari Lehtonen's Finnish paper.
3. Wrtite in the form $D^{2} \equiv a(\bmod m), \quad D=a x+b$.
a) $x^{2}+4 x+5 \equiv 0(\bmod 10)$
b) $x^{2}+3 x+5 \equiv 0(\bmod 10)$
c) $x^{2}+3 x+5 \equiv 0(\bmod 9)$
d) $3 x^{2}+x+5 \equiv 0(\bmod 9)$
4. Let $p \in \mathbb{P} \backslash\{2\}$ and $(a, p)=(b, p)=1$. Prove that if neither $x^{2} \equiv a(\bmod p)$ nor $x^{2} \equiv b(\bmod p)$ has a solkution, then $x^{2} \equiv a b(\bmod p)$ has a solution.
5. Which of the following have a solution??
a) $x^{2} \equiv 7(\bmod 101)$
b) $x^{2} \equiv-7(\bmod 101)$
c) $x^{2} \equiv 7(\bmod 303)$
6. For which $p \in \mathbb{P}$ does the congruence $x^{2} \equiv-3(\bmod 3 p)$ have a solution?
7. Solve:
a) $3 x+2 y=1$
b) $3 x-2 y=1$
c) $6 x+4 y=2$
d) $17 x-43 y=100$
e) $110 x-174 y=18$
8. Let a, b and c be positive integers and $j a(a, b)=1$. Prove that the linear Diophantine equation $a x+b y=c$
a) has a positive solution, if $a b<c$,
b) has no positive solution, if jos $a+b>c$.
9. Determine all primitive Pythagorean triples (x, y, z), with $y=40$. How about non-primitive ones?
10. Prove that in any Pythagorean triple (x, y, z)
a) at least one of the numbers x, y, z is divisible by 3
b) at least one of the numbers x, y, z is divisible by 4
c) at least one of the numbers x, y, z is divisible by 5 .

