Exercise set 7

Tuesday NOV 12011 at 4 pm. Sharp

Number Theory

in MaD-302

1. Prove for all odd primes p
a) $(p-2)!\equiv 1(\bmod p)$.
b) $2 \cdot(p-3)!\equiv 1(\bmod p)$.

Hint: In a group all elements are invertible. When is $a \neq a^{-1} \in Z_{p}^{*}$?
2. (jatkoa?) Prove for all odd primes p

$$
1^{2} \cdot 3^{2} \cdot 5^{2} \cdots \cdots(p-2)^{2} \equiv(-1)^{(p+1) / 2} \quad(\bmod p)
$$

3. Determine all quadratic residues $(\bmod 23)$. What are their representatives of smallest absolute value?. What do you notice??
4. Use Euler'scriterion to determine whether 2 is a quadratic residue (mod 17). How about 5?
5. How many (non-congruent) solutions has $x^{2} \equiv 2$
a) $(\bmod 17)$
b) $\left(\bmod 17^{2}\right)$
(How bout c$)\left(\bmod 17^{100}\right)$, or $\mathrm{d}(\bmod 10)$?) Hint: 2, 2, (2,0).
6. Does 2 have a sqare root
a) in the field \mathbb{Z}_{29}
b) in the field \mathbb{Z}_{31}
c) in the field \mathbb{Z}_{97}
d) in the field \mathbb{Z}_{101}
e) in the field \mathbb{Z}_{111} ?
7. Calculate $\left(\frac{61}{31}\right),\left(\frac{33}{31}\right),\left(\frac{29}{31}\right),\left(\frac{8}{31}\right)$ and $\left(\frac{128}{821}\right)$.
8. find $\left(\frac{3}{17}\right)$
a) By Gauss's lemma
b) Using Euler's criterion
c) Using reciprocity
9. Let p be annodd prime and $a b \equiv 1(\bmod p)$. Prove that if the congruence $x^{2} \equiv a$ $(\bmod p)$ has a solution, then also $x^{2} \equiv b(\bmod p)$ has a solution.
