Exercise set 7 Tuesday NOV 1 2011 at 4 pm. Sharp

Number Theory in MaD-302

- 1. Prove for all odd primes p
 - a) $(p-2)! \equiv 1 \pmod{p}$.
 - b) $2 \cdot (p-3)! \equiv 1 \pmod{p}$.

Hint: In a group all elements are invertible. When is $a \neq a^{-1} \in \mathbb{Z}_p^*$?

2. (jatkoa?) Prove for all odd primes p

 $1^2 \cdot 3^2 \cdot 5^2 \cdot \dots \cdot (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}$

3. Determine all quadratic residues (mod 23). What are their representatives of smallest absolute value?. What do you notice??

4. Use Euler'scriterion to determine whether 2 is a quadratic residue (mod 17). How about 5?

- 5. How many (non-congruent) solutions has $x^2 \equiv 2$
 - a) (mod 17)
 - b) (mod 17^2)

(How bout c) (mod 17^{100}), or d (mod 10)?) Hint: 2,2,(2,0).

6. Does 2 have a sqare root

- a) in the field \mathbb{Z}_{29}
- b) in the field \mathbb{Z}_{31}
- c) in the field \mathbb{Z}_{97}
- d) in the field \mathbb{Z}_{101}
- e) in the field \mathbb{Z}_{111} ?

7. Calculate $\left(\frac{61}{31}\right)$, $\left(\frac{33}{31}\right)$, $\left(\frac{29}{31}\right)$, $\left(\frac{8}{31}\right)$ and $\left(\frac{128}{821}\right)$.

- 8. find $\left(\frac{3}{17}\right)$
 - a) By Gauss's lemma
 - b) Using Euler's criterion
 - c) Using reciprocity

9. Let p be annodd prime and $ab \equiv 1 \pmod{p}$. Prove that if the congruence $x^2 \equiv a \pmod{p}$ has a solution, then also $x^2 \equiv b \pmod{p}$ has a solution.