Exercise set 6 Tuesday OCT 25 2011 at 4 pm. Sharp

Number Theory in MaD-302

1. Solve:			
1	$x \equiv 2 \pmod{6}$	1	$2x \equiv 3 \pmod{9}$
a) 🕻	$x \equiv 5 \pmod{7}$	b) 〈	$4x \equiv 6 \pmod{10}$
	$x \equiv 8 \pmod{15}$		$6x \equiv 9 \pmod{11}$

2. Prove by the Chinese Remainder Theorem: for all $k \in \mathbb{N}$ there exist k consequtive numbers $a + 1, \ldots, a + k$ of which all are divisible whith some square (not necessarily the same).

- 3. Calculate $\varphi(10)$, $\varphi(100)$ and $\varphi(10!)$.
- 4. a) For which n is $\varphi(n)$ odd?
- b) For which n is $\varphi(n) = \varphi(2n)$?
- 5. Find the orders of 3, 7 ja 11 $\pmod{20}$.
- 6. Find alt least one primitive root modulo 14.
- 7. 2 is a primitive root modulo 101. Find $ord_{101}(2^{32})$.

8. 2 is a primitive root modulo 19. How many primitive roots modulo 19 exist? After finding out this, find all these primitive roots.

9. Let r be a primitive root modulo m and (m, a) = 1. Prove that the following are equivalent:

- (1) a is a primitive root modulo \pmod{m} .
- (2) For all prime factors p of $\varphi(m)$:

$$a^{\varphi(m)/p} \not\equiv 1 \pmod{m}.$$

10. Construct an index table for 13. (Compare with the given table).

- 11. Which of the following congruences are solvable?
 - a) $x^4 \equiv 17 \pmod{67}$
 - b) $x^4 \equiv 18 \pmod{67}$
 - c) $x^5 \equiv 17 \pmod{67}$

Solve them using that 2 is a primitive root (mod 67).