Exercise set 6
Tuesday OCT 252011 at 4 pm. Sharp

Number Theory

 in MaD-3021. Solve:
a) $\left\{\begin{array}{l}x \equiv 2(\bmod 6) \\ x \equiv 5(\bmod 7) \\ x \equiv 8(\bmod 15)\end{array}\right.$
b) $\left\{\begin{array}{l}2 x \equiv 3(\bmod 9) \\ 4 x \equiv 6(\bmod 10) \\ 6 x \equiv 9(\bmod 11)\end{array}\right.$
2. Prove by the Chinese Remainder Theorem: for all $k \in \mathbb{N}$ there exist k consequtive numbers $a+1, \ldots, a+k$ of which all are divisible whith some square (not necessarily the same).
3. Calculate $\varphi(10), \varphi(100)$ and $\varphi(10!)$.
4. a) For which n is $\varphi(n)$ odd?
b) For which n is $\varphi(n)=\varphi(2 n)$?
5. Find the orders of 3,7 ja $11(\bmod 20)$.
6. Find alt least one primitive root modulo 14.
7. 2 is a primitive root modulo 101. Find ord $\mathrm{d}_{101}\left(2^{32}\right)$.
8. 2 is a primitive root modulo 19. How many primitive roots modulo 19 exist? After finding out this, find all these primitive roots.
9. Let r be a primitive root modulo m and $(m, a)=1$. Prove that the following are equivalent:
(1) a is a primitive root modulo $(\bmod m)$.
(2) For all prime factors p of $\varphi(m)$:

$$
a^{\varphi(m) / p} \not \equiv 1 \quad(\bmod m) .
$$

10. Construct an index table for 13. (Compare with the given table).
11. Which of the following congruences are solvable?
a) $x^{4} \equiv 17(\bmod 67)$
b) $x^{4} \equiv 18(\bmod 67)$
c) $x^{5} \equiv 17(\bmod 67)$

Solve them using that 2 is a primitive root $(\bmod 67)$.

