Exercise set 5

Tuesday OCT 182011 at 4 pm. Sharp

Number Theory in MaD-302

1. Use the divisibility criterion to decide whether 123456789 is divisible by
(a) 3 or 9
(b) 11 .
(c) Is 476271 a prime ? (No division!)
2. Invent or find the div. criteria and find which of the numbers 2222222, 600560 and 3416 are divisible by
(i) 4
(ii) 8
3. This is an exercise in Algebra. sta tiedetään, että

Def: The order of a (finite) group G is $\# G$.
Def: The order of an element $a \in G$ is $\min \left\{n \in \mathbb{N} \mid a^{n}=1\right\} \quad(=\#\langle a\rangle$.
Exx: ord $\mathbb{Z}_{5}^{*}=4$, ord $\mathbb{Z}_{10}^{*}=$ ord $\left\{a \in Z_{10} \mid a\right.$ is invertible $\}=$ ord $\left\{\left\{a \in Z_{10} \mid\right.\right.$ $(a, 10)=1\}=$ ord $\{1,3,7,9\}=4$. Generally ord $\left\{\mathbb{Z}_{n}^{*} \varphi(n)\right.$.
ord $1 \in \mathbb{Z}_{10}^{*}=1$ since $1^{1}=1$.
ord $3 \in \mathbb{Z}_{10}^{*}$ kertaluku on 4 since $3^{1}=3 \neq 1,3^{2}=9 \neq 1,3^{3}=27=7 \neq 1$
and finally $3^{4}=81=1$.
ord $9 \in \mathbb{Z}_{10}^{*}=2$ since $9^{1}=9 \neq 1$, but already $9^{2}=81=1$.
Lagrange's theorem: ord a| ord G.
Prove Euler's thm by Lagrange's.
4. (a) Solve the linear congruence $3 x \equiv 5(\bmod 7)$,
(b) Solve the linear congruence $6 x \equiv 5(\bmod 12)$.
(c) How many solutions (classes) exist for $943 x \equiv 381(\bmod 2576)$,
(d) How many solutions (classes) exist for $1375 x \equiv 242(\bmod 5625)$?

Perustele.
5. Solve the linear congruence $6 x \equiv 4(\bmod 10)$ by 3 methods.
6. If a number is divided
(i) by 2, 1 remains
(ii) by 3, 2 remain,
(iii) by 7, nothing remains

Find the number(s).
7. Solve the simultaneous congruences:
a) $\left\{\begin{array}{l}x \equiv 2(\bmod 5) \\ x \equiv 5(\bmod 7) \\ x \equiv 7(\bmod 12)\end{array} \mathrm{b}\right)\left\{\begin{array}{l}x \equiv 2(\bmod 6) \\ x \equiv 5(\bmod 7) \\ x \equiv 7(\bmod 15)\end{array} \mathrm{c}\right)\left\{\begin{array}{l}x \equiv 2(\bmod 5) \\ x \equiv 5(\bmod 7) \mathrm{d}) \\ x \equiv 8(\bmod 12)\end{array}\left\{\begin{array}{l}x \equiv 3(\bmod 9) \\ x \equiv 6(\bmod 10) \\ x \equiv 9(\bmod 11)\end{array}\right.\right.$

NEWPAGE

8. Let p and q be different primes. Prove

$$
p^{q-1}+q^{p-1} \equiv 1 \quad(\bmod p q)
$$

Assume $p \in \mathbb{P}$. Prove
(a) $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p),($ Use Fermat's little thm)
(b) $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p),(D o$ NOT use Fermat!)

