Exercise set 5Number TheoryTuesday OCT 18 2011 at 4 pm. Sharpin MaD-302

1. Use the divisibility criterion to decide whether 123456789 is divisible by

(a) 3 or 9

(b) *11*.

(c) Is 476271 a prime ? (No division!)

2. Invent or find the div. criteria and find which of the numbers 222222, 600560 and 3416 are divisible by

(i) 4

(ii) *8*

3. This is an exercise in Algebra. sta tiedetään, että

Def: The order of a (finite) group G is #G.

Def: The order of an element $a \in G$ is $\min\{n \in \mathbb{N} \mid a^n = 1\}$ $(=\#\langle a \rangle)$.

Exx: ord $\mathbb{Z}_{5}^{*} = 4$, ord $\mathbb{Z}_{10}^{*} = ord \{a \in Z_{10} \mid a \text{ is invertible}\} = ord \{\{a \in Z_{10} \mid (a, 10) = 1\} = ord \{1, 3, 7, 9\} = 4$. Generally ord $\{\mathbb{Z}_{n}^{*}\varphi(n)$.

ord $1 \in \mathbb{Z}_{10}^* = 1$ since $1^1 = 1$. ord $3 \in \mathbb{Z}_{10}^*$ kertaluku on 4 since $3^1 = 3 \neq 1$, $3^2 = 9 \neq 1$, $3^3 = 27 = 7 \neq 1$

and finally $3^4 = 81 = 1$.

ord $9 \in \mathbb{Z}_{10}^* = 2$ since $9^1 = 9 \neq 1$, but already $9^2 = 81 = 1$.

Lagrange's theorem: ord $a \mid ord G$.

Prove Euler's thm by Lagrange's.

4. (a) Solve the linear congruence $3x \equiv 5 \pmod{7}$,

(b) Solve the linear congruence $6x \equiv 5 \pmod{12}$.

(c) How many solutions (classes) exist for $943x \equiv 381 \pmod{2576}$,

(d) How many solutions (classes) exist for $1375x \equiv 242 \pmod{5625}$? Perustele.

5. Solve the linear congruence $6x \equiv 4 \pmod{10}$ by 3 methods.

6. If a number is divided

- (i) by 2, 1 remains
- (ii) by 3, 2 remain,

(iii) by 7, nothing remains

Find the number(s).

7. Solve the simultaneous congruences:

a)
$$\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv 5 \pmod{7} \\ x \equiv 7 \pmod{12} \end{cases} \begin{cases} x \equiv 2 \pmod{6} \\ x \equiv 5 \pmod{7} \\ x \equiv 7 \pmod{15} \end{cases} \begin{cases} x \equiv 2 \pmod{6} \\ x \equiv 5 \pmod{7} \\ x \equiv 6 \pmod{10} \\ x \equiv 8 \pmod{12} \end{cases} \begin{cases} x \equiv 3 \pmod{9} \\ x \equiv 6 \pmod{10} \\ x \equiv 9 \pmod{11} \\ x \equiv 9 \pmod{11} \end{cases}$$

NEWPAGE

8. Let p and q be different primes. Prove

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}.$$

Assume $p \in \mathbb{P}$. Prove

- (a) $(a+b)^p \equiv a^p + b^p \pmod{p}$, (Use Fermat's little thm)
- (b) $(a+b)^p \equiv a^p + b^p \pmod{p}$, (Do NOT use Fermat!)
- (c) $a^p \equiv a \pmod{p}$ by (2) (Prove Fermat's little thm by (b).)