Exercise set 2 Number Theory Tuesday SEP 27 2011 at 4 pm. SHARP (!) in MaD-302

1. Use Eratosthenes' sieve to find all primes under 200

2. Let $p \neq 3$ be a prime. Prove that

p = 3k + 1 or p = 3k - 1 for some $k \in \mathbb{N}$.

3. Preove: if p is prime and $a \in \mathbb{Z}$, then either $p \mid a \text{ or } (a, p) = 1$.

4. Prove that if n and a are natural numbers and $\sqrt[n]{a} \in \mathbb{Q}$, then $\sqrt[n]{a} \in \mathbb{N}$ so for example $\sqrt[3]{10}$ is irrational.

5. in Euclid's classical proof, a prime outside $\{p_1, p_2, \ldots, p_n\}$ is found by considering prime factors of

$$N_n = p_1 p_2 \cdots p_n + 1$$

. Do this beginning with $\{2\}$, next being $\{2, p_2\}$, where in fact $N_2 = 2 + 1 = 3$, so $p_2 = 3$ since N_2 happens to be prime. Continue, until

(1) either, you have found 5 odd primes. (or more, if you like)

(2) ir: N_p is not a prime $p_n \neq N_n$.

Idesas? Questions??

6. a) 3,5 and 7 are a triple of primes: p, p+2, p+4 Why are there no others?

b) let $a, b \in \mathbb{N}$ and $(a, b) \geq 2$. prove that he set $A = \{an + b \mid n = 0, 1, 2, ...\}$ contains at most one prime.

7. Prove htat there is a number C > 0, such tha rt for all $k \ge 2$

(1)
$$\sum_{p \le k, p \in \mathbb{P}} \frac{1}{p} \ge \log \log k + C,$$

so the series $\sum_{p \in \mathbb{P}} \frac{1}{p}$ doverges. You may assume as known (lectures!) that

(2)
$$\prod_{p \le k, p \in \mathbb{P}} \frac{1}{1 - p^{-1}} \ge \sum_{n} \frac{1}{n} \ge \log k.$$

Take logarithms. Remember how to use them, and notice that

(1) $-\ln\left(1-\frac{1}{p}\right) \le \frac{1}{p} + \frac{1}{p^2}$, (proof not required today, nut easy using series or tha fact that $f(x) = \log(1+x) - x + x^2$ decreases on $[-\frac{1}{2}, 0]$

(2) the series $\sum_{p} p^{-2}$ converges.

KÄÄNNÄ

- 8. Calculate (at least some terms of)
- (1) $E_0 * E_0$
- (2) $E * E_0$
- (3) $E_0 * \Omega$
- (4) $E * N_{\alpha}$
- (5) $E * \sigma_{\frac{1}{2}}$ (6) $\mu * E * E_0$.

Remember : Eukleideen algoritmi luvuille 126 and 35:

 $126 = 3 \cdot 35 + 21,$ $35 = 1 \cdot 21 + 14,$ $21 = 1 \cdot 14 + 7,$ $14 = 2 \cdot 7.$

s and t are found "backwards":

$$(126, 35) = 7 = 21 - 1 \cdot 14,$$

= 21 - (35 - 1 \cdot 21),
= (126 - 3 \cdot 35) - (35 - (126 - 3 \cdot 35)),
= 2 \cdot 126 - 7 \cdot 35.

This is clumsy when large numbers on computers. Better:

Let ℓ , q_i , r_i be like in Eukleideen algoritm. try to find s_i and t_i such that $s_i r_0 + t_i r_1 = r_i$ for all $0 \le i \le \ell$.

Assume first, that such mumbers exist: Apply tis to indices i - 1, i and i + 1 and use Eukleideen algorithmin:

(3)
$$r_{i+1} = r_{i-1} - q_i r_i = (s_{i-1}r_0 + t_{i-1}r_1) - q_i (s_i r_0 + t_i r_1) \\ = (s_{i-1} - q_i s_i)r_0 + (t_{i-1} - q_i t_i)r_1.$$

But $r_{i+1} = s_{i+1}r_0 + t_{i+1}r_1$. Choos the coefficients recursively:

(4)
$$s_{i+1} = s_{i-1} - q_i s_i$$
$$t_{i+1} = t_{i-1} - q_i t_i.$$

Then, by (3), if $s_k r_0 + t_k r_1 = r_k$ for k = i - 1 and k = i and the coefficients s_k and t_k are found by (4) then the equation $s_k r_0 + t_k r_1 = r_k$ is also satisfied for k = i + 1. So, it is sufficient to find suitable initial values. Such are

 $s_0 = 1, \quad t_0 = 0, \quad s_1 = 0, \quad t_1 = 1.$

In the extended Euclidean algorithm, numbers ℓ , q_i , $r_i \in \mathbb{N}$, s_i , $t_i \in \mathbb{Z}$, $1 \le i \le \ell$, are found such that $0 \le r_{i-1} < r_i$, for $1 \le i \le \ell$, ja

(5)
$$\begin{cases} s_0 = 1, \quad t_0 = 0\\ s_1 = 0, \quad t_1 = 1\\ r_{i-1} = q_i r_i + r_{i+1}\\ s_{i-1} = q_i s_i + s_{i+1}\\ t_{i-1} = q_i t_i + t_{i+1} \end{cases}$$

Then $s_i r_0 + t_i r_1 = r_i$ for all $0 \le i \le \ell$ and $r_\ell = (r_0, r_1)$. Literature [?, §3.2], [?, §4.5.2].

ESIMERKKI. The previous exaple in the extendend algorithm gives

i	r_i	s_i	t_i	
0	126	1	0	
1	35	0	1	
2	21	1	-3	
3	14	-1	4	$Riviltä i = 4 saadaan r_{\ell} = (r_0, r_1) = s_{\ell}r_0 + t_{\ell}r_1, eli$
4	7	2	-7	
5	0	-5	18	$7 = (126, 35) = 2 \cdot 126 - 7 \cdot 33$