Exercise set 2

Tuesday SEP 272011 at 4 pm. SHARP (!)

Number Theory
in MaD-302

1. Use Eratosthenes' sieve to find all primes under 200
2. Let $p \neq 3$ be a prime. Prove that

$$
p=3 k+1 \quad \text { or } \quad p=3 k-1 \quad \text { for some } k \in \mathbb{N} .
$$

3. Preove: if p is prime and $a \in \mathbb{Z}$, then either $p \mid a$ or $(a, p)=1$.
4. Prove that if n and a are natural numbers and $\sqrt[n]{a} \in \mathbb{Q}$, then $\sqrt[n]{a} \in \mathbb{N}$ so for example $\sqrt[3]{10}$ is irrational.
5. in Euclid's classical proof, a prime outside $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is found by considering prime factors of

$$
N_{n}=p_{1} p_{2} \cdots p_{n}+1
$$

. Do this beginning with $\{2\}$, next being $\left\{2, p_{2}\right\}$, where in fact $N_{2}=2+1=3$, so $p_{2}=3$ since N_{2} happens to be prime. Continue, until
(1) either, you have found 5 odd primes . (or more, if you like)
(2) ir: N_{p} is not a prime $p_{n} \neq N_{n}$.

Idesas? Questions??
6. a) 3,5 and 7 are a triple of primes: $p, p+2, p+4$ Why are there no others?
b) leta, $b \in \mathbb{N}$ and $(a, b) \geq 2$. prove that hte set $A=\{a n+b \mid n=0,1,2, \ldots\}$ contains at most one prime.
7. Prove htat there is a number $C>0$, such tha rt for all $k \geq 2$

$$
\begin{equation*}
\sum_{p \leq k, p \in \mathbb{P}} \frac{1}{p} \geq \log \log k+C \tag{1}
\end{equation*}
$$

so the series $\sum_{p \in \mathbb{P}} \frac{1}{p}$ doverges. You may assume as known (lectures!) that

$$
\begin{equation*}
\prod_{p \leq k, p \in \mathbb{P}} \frac{1}{1-p^{-1}} \geq \sum_{n} \frac{1}{n} \geq \log k \tag{2}
\end{equation*}
$$

Take logarithms. Remember how to use them, and notice that
(1) $-\ln \left(1-\frac{1}{p}\right) \leq \frac{1}{p}+\frac{1}{p^{2}}$, (proof not required today, nut easy using series or tha fact that $f(x)=\log (1+x)-x+x^{2}$ decreases on $\left[-\frac{1}{2}, 0\right]$
(2) the series $\sum_{p} p^{-2}$ converges.

KÄÄNNÄ

8. Calculate (at least some terms of)
(1) $E_{0} * E_{0}$
(2) $E * E_{0}$
(3) $E_{0} * \Omega$
(4) $E * N_{\alpha}$
(5) $E * \sigma_{\frac{1}{2}}$
(6) $\mu * E * E_{0}$.
9. Just read:

Remember : Eukleideen algoritmi luvuille 126 and 35:

$$
\begin{aligned}
126 & =3 \cdot 35+21, \\
35 & =1 \cdot 21+14, \\
21 & =1 \cdot 14+7, \\
14 & =2 \cdot 7 .
\end{aligned}
$$

s and t are found "backwards":

$$
\begin{aligned}
(126,35)=7 & =21-1 \cdot 14, \\
& =21-(35-1 \cdot 21), \\
& =(126-3 \cdot 35)-(35-(126-3 \cdot 35)), \\
& =2 \cdot 126-7 \cdot 35 .
\end{aligned}
$$

This is clumsy when large numbers on computers. Better:
Let ℓ, q_{i}, r_{i} be like in Eukleideen algoritm. try to find s_{i} and t_{i} such that $s_{i} r_{0}+$ $t_{i} r_{1}=r_{i}$ for all $0 \leq i \leq \ell$.

Assume first, that such mumbers exist: Apply tis to indices $i-1, i$ and $i+1$ and use Eukleideen algoritmin:

$$
\begin{align*}
r_{i+1} & =r_{i-1}-q_{i} r_{i}=\left(s_{i-1} r_{0}+t_{i-1} r_{1}\right)-q_{i}\left(s_{i} r_{0}+t_{i} r_{1}\right) \\
& =\left(s_{i-1}-q_{i} s_{i}\right) r_{0}+\left(t_{i-1}-q_{i} t_{i}\right) r_{1} . \tag{3}
\end{align*}
$$

But $r_{i+1}=s_{i+1} r_{0}+t_{i+1} r_{1}$. Choos the coefficients recursively:

$$
\begin{align*}
s_{i+1} & =s_{i-1}-q_{i} s_{i}, \\
t_{i+1} & =t_{i-1}-q_{i} t_{i} . \tag{4}
\end{align*}
$$

Then, by (3), if $s_{k} r_{0}+t_{k} r_{1}=r_{k}$ for $k=i-1$ and $k=i$ and the coefficients s_{k} and t_{k} are found by (4) then the equation $s_{k} r_{0}+t_{k} r_{1}=r_{k}$ is also satisfied for $k=i+1$. So, it is sufficient to find suitable initiala values. Such are

$$
s_{0}=1, \quad t_{0}=0, \quad s_{1}=0, \quad t_{1}=1 .
$$

In the extended Euclidean algorithm, numbers $\ell, q_{i}, r_{i} \in \mathbb{N}$, $s_{i}, t_{i} \in \mathbb{Z}, 1 \leq i \leq \ell$, are found such that $0 \leq r_{i-1}<r_{i}$, for $1 \leq i \leq \ell$, ja

$$
\left\{\begin{align*}
s_{0} & =1, \quad t_{0}=0 \tag{5}\\
s_{1} & =0, \quad t_{1}=1 \\
r_{i-1} & =q_{i} r_{i}+r_{i+1} \\
s_{i-1} & =q_{i} s_{i}+s_{i+1} \\
t_{i-1} & =q_{i} t_{i}+t_{i+1}
\end{align*}\right.
$$

Then $s_{i} r_{0}+t_{i} r_{1}=r_{i}$ for all $0 \leq i \leq \ell$ amd $r_{\ell}=\left(r_{0}, r_{1}\right)$.
Literature [?, §3.2], [?, §4.5.2].
Esimerkki. The previous exaple in the extendend algorithm gives

i	r_{i}	s_{i}	t_{i}
0	126	1	0
1	35	0	1
2	21	1	-3
3	14	-1	4
4	7	2	-7
5	0	-5	18

Riviltä $i=4$ saadaan
$r_{\ell}=\left(r_{0}, r_{1}\right)=s_{\ell} r_{0}+t_{\ell} r_{1}$, eli
$7=(126,35)=2 \cdot 126-7 \cdot 35$.

