Exercise set 1 Number Theory Tuesday SEP 20 2011 at 4-6 pm. in MaD-302

- 1. Present the following in base 10
- (a) 10011_2 ,
- (b) 1203_4 ,
- (c) $A0C_{16}$.

Present the following in base 10

- (a) 10011_2 ,
- (b) 1203₄,
- (c) $A0C_{16}$.

2. Calculate

- (a) $1110_2 + 101_2$,
- (b) $230_4 101_2$, give the answer in base 2
- (c) $32_4 \cdot 23_4$.

3. Assume $k \in \mathbb{N}, k > 1$.

- (a) Find the base of the number system k, such that $28 = 124_k$.
- (b) Calculate $101_k + 101_{k^2}$.

4. Prove:

Assume $n, m, d \in \mathbb{Z}$.

- (a) If $d \mid n$ and $n \mid m$, then $d \mid m$.
- (b) If $d \mid n$ and $d \mid m$, then $d \mid (an + bm)$ for all $a, b \in \mathbb{Z}$.
- and prove by induction:

(c) Let $m \in \mathbb{Z} \setminus \{0\}$ and $n \in \mathbb{N}$. If $a_i \in \mathbb{Z}$ and $m \mid a_i$ for all i = 1, 2, ..., n, then $m \mid (c_1a_1 + c_2a_2 + \dots + c_na_n)$

for all $c_i \in \mathbb{Z}, i = 1, 2, ..., n$.

5. Olkoot $m \in \mathbb{Z} \setminus \{0\}$ ja $n \in \mathbb{N}$, $n \geq 2$. Näytä, että jos $a_i \in \mathbb{Z}$, $m \mid a_i$ kaikilla $i = 1, 2 \dots n - 1$ ja $m \not\mid a_n$, niin

$$m \not| (a_1 + a_2 + \dots + a_n).$$

6. Which of the following are true? Proof or counterexample.

- (a) If the number $k \in \mathbb{Z}$ is divisible by 5, then $(k+5)^{10}$ is divisible by 5.
- (b) Let $a, b, c, d \in \mathbb{Z}$, $a \mid b$ and $c \mid d$. Then $(a + c) \mid (b + d)$.
- (c) Fir natural numbers a, b, n with $a^2 | n, b^2 | n$ and $a^2 \leq b^2$ one always has a | b.

GO TO NEXT PAGE

For fxercises (7) and (8) use the **Euclidean algorithm**:

(a,b) is found like this (if $a \ge b > 0$). Define the numbers r_j by $r_0 = a$, $r_1 = b$ and generally by the division algorithm:

$$r_{j-2} = r_{j-1}q_{j-1} + r_j, \quad 0 \le r_j < r_{j-1}, j = 2, 3, \dots, n+1.$$

The first 3 equations are

$$a = bq_1 + r_2,$$

 $b = r_2q_2 + r_3.$
 $r_2 = r_3q_3 + r_4.$

Since generally (a, b) = (a + kb, b),

$$d = (a, b) = (a - bq_1, b) = (r_2, b)$$
, same as $(r_0, r_1) = (r_1, r_2)$.

Continue the same way, and arrive at

$$d = (r_j, r_{j+1}), \quad \forall \ j = 0, 1, \dots, n.$$

But $r_{n+1} = 0$, so $(r_n, r_{n+1}) = r_n$. All in all

$$d = r_n$$

Finally x, y in d = ax + by can be found by reversing the calculation.

Example

Find (252,198): $252 = 1 \cdot 198 + 54$ $198 = 3 \cdot 54 + 36$ $54 = 1 \cdot 36 + 18$ $36 = 2 \cdot 18$ Siis (252, 198) = $18 = 54 - 36 = \dots = 4 \cdot 252 - 5 \cdot 198$.

- 7. Calculate (1492, 1066) using Euclid'd algorithm.
- 8. Find $x, y \in \mathbb{Z}$, s. th.

(1492, 1066) = 1492x + 1066y.

9. Find numbers $a, b, c \in \mathbb{Z}$ s.th.

- (1) $a \mid c \text{ and } b \mid c \text{ but ab } \not| c$,
- (2) $a \mid bc \ but \ a \not\mid c$.