Exercise set 1

Tuesday SEP 202011 at 4-6 pm. in MaD-302

1. Present the following in base 10
(a) 10011_{2},
(b) 1203_{4},
(c) $A 0 C_{16}$.

Present the following in base 10
(a) 10011_{2},
(b) 1203_{4},
(c) $A 0 C_{16}$.
2. Calculate
(a) $1110_{2}+101_{2}$,
(b) $230_{4}-101_{2}$, give the answer in base 2
(c) $32_{4} \cdot 23_{4}$.
3. Assume $k \in \mathbb{N}, k>1$.
(a) Find the base of the number system k, such that $28=124_{k}$.
(b) Calculate $101_{k}+101_{k^{2}}$.
4. Prove:

Assume $n, m, d \in \mathbb{Z}$.
(a) If $d \mid n$ and $n \mid m$, then $d \mid m$.
(b) If $d \mid n$ and $d \mid m$, then $d \mid(a n+b m)$ for all $a, b \in \mathbb{Z}$.
and prove by induction:
(c) Let $m \in \mathbb{Z} \backslash\{0\}$ and $n \in \mathbb{N}$. If $a_{i} \in \mathbb{Z}$ and $m \mid a_{i}$ for all $i=1,2, \ldots n$, then

$$
m \mid\left(c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}\right)
$$

for all $c_{i} \in \mathbb{Z}, i=1,2, \ldots, n$.
5. Olkoot $m \in \mathbb{Z} \backslash\{0\}$ ja $n \in \mathbb{N}$, $n \geq 2$. Näytä, että jos $a_{i} \in \mathbb{Z}$, $m \mid a_{i}$ kaikilla $i=1,2 \ldots n-1$ ja $m \nmid a_{n}$, niin

$$
m \nmid\left(a_{1}+a_{2}+\cdots+a_{n}\right) .
$$

6. Which of the follwing are true? Proof or counterexample.
(a) If the number $k \in \mathbb{Z}$ is divisible by 5 , then $(k+5)^{10}$ is divisible by 5 .
(b) Let $a, b, c, d \in \mathbb{Z}, a \mid b$ and $c \mid d$. Then $(a+c) \mid(b+d)$.
(c) Fir natural numbers a, b, n with $a^{2}\left|n, b^{2}\right| n$ and $a^{2} \leq b^{2}$ one always has $a \mid b$.

GO TO NEXT PAGE

For fxercises (7) and (8) use the Euclidean algorithm:
(a, b) is found like this (if $a \geq b>0$). Define the numbers r_{j} by $r_{0}=a, r_{1}=b$ and generally by the division algorithm:

$$
r_{j-2}=r_{j-1} q_{j-1}+r_{j}, \quad 0 \leq r_{j}<r_{j-1}, j=2,3, \ldots, n+1
$$

The first 3 equations are

$$
\begin{gathered}
a=b q_{1}+r_{2}, \\
b=r_{2} q_{2}+r_{3} . \\
r_{2}=r_{3} q_{3}+r_{4} .
\end{gathered}
$$

Since generally $(a, b)=(a+k b, b)$,

$$
d=(a, b)=\left(a-b q_{1}, b\right)=\left(r_{2}, b\right), \text { same as }\left(r_{0}, r_{1}\right)=\left(r_{1}, r_{2}\right) .
$$

Continue the same way, and arrive at

$$
d=\left(r_{j}, r_{j+1}\right), \quad \forall j=0,1, \ldots, n .
$$

But $r_{n+1}=0$,so $\left(r_{n}, r_{n+1}\right)=r_{n}$. All in all

$$
d=r_{n},
$$

Finally x, y in $d=a x+b y$ can be found by reversing the calculation.

Example

Find $(252,198)$:
$252=1 \cdot 198+54$
$198=3 \cdot 54+36$
$54=1 \cdot 36+18$
$36=2 \cdot 18$
Siis $(252,198)=18=54-36=\ldots=4 \cdot 252-5 \cdot 198$.
7. Calculate $(1492,1066)$ using Euclid'd algorithm.
8. Find $x, y \in \mathbb{Z}$, s. th.

$$
(1492,1066)=1492 x+1066 y .
$$

9. Find numbers $a, b, c \in \mathbb{Z}$ s.th.
(1) $a \mid c$ and $b \mid c$ but $a b \nless c$,
(2) $a \mid b c$ but $a \not \backslash c$.
